Desynchronization in diluted neural networks


Abstract in English

The dynamical behaviour of a weakly diluted fully-inhibitory network of pulse-coupled spiking neurons is investigated. Upon increasing the coupling strength, a transition from regular to stochastic-like regime is observed. In the weak-coupling phase, a periodic dynamics is rapidly approached, with all neurons firing with the same rate and mutually phase-locked. The strong-coupling phase is characterized by an irregular pattern, even though the maximum Lyapunov exponent is negative. The paradox is solved by drawing an analogy with the phenomenon of ``stable chaos, i.e. by observing that the stochastic-like behaviour is limited to a an exponentially long (with the system size) transient. Remarkably, the transient dynamics turns out to be stationary.

Download