Do you want to publish a course? Click here

Normal state electronic structure in the heavily overdoped regime of Bi1.74Pb0.38Sr1.88CuO6+delta single-layer cuprate superconductors

187   0   0.0 ( 0 )
 Added by Ke Yang
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the electronic structure in the heavily overdoped regime of the single layer cuprate superconductor Bi1.74Pb0.38Sr1.88CuO6+delta. We found that the nodal quasiparticle behavior is dominated mostly by phonons, while the antinodal quasiparticle lineshape is dominated by spin fluctuations. Moreover, while long range spin fluctuations diminish at very high doping, the local magnetic fluctuations still dominate the quasiparticle dispersion, and the system exhibits a strange metal behavior in the entire overdoped regime.



rate research

Read More

Efforts to understand the microscopic origin of superconductivity in the cuprates are dependent on knowledge of the normal state. The Hall number in the low temperature, high field limit $n_{rm H}(0)$ has a particular significance because within conventional transport theory it is simply related to the number of charge carriers, and so its evolution with doping gives crucial information about the nature of the charge transport. Here we report a study of the high field Hall coefficient of the single-layer cuprates Tl$_2$Ba$_2$CuO$_{6+delta}$ (Tl2201) and (Pb/La) doped Bi$_2$Sr$_2$CuO$_{6+delta}$ (Bi2201) which shows how $n_{rm H}(0)$ evolves in the overdoped, so-called strange metal, regime of cuprates. We find that $n_{rm H}(0)$ increases smoothly from $p$ to $1+p$, where $p$ is the number of holes doped into the parent insulating state, over a wide range of doping. The evolution of $n_{rm H}$ correlates with the emergence of the anomalous linear-in-$T$ term in the low-$T$ in-plane resistivity. The results could suggest that quasiparticle decoherence extends to dopings well beyond the pseudogap regime.
55 - Ge He , Xinjian Wei , Xu Zhang 2017
We present a tunneling study on single crystalline parent cuprate thin films, i.e. a series of Pr2CuO4+/-{delta}(PCO) with tunable superconducting transition temperature. The zero-bias anomaly of differential conductance, well reported in the normal state of R2-xCexCuO4 (R = Pr, Nd, La) and named as normal state gap (NSG), is observed in the Ce-free samples. This NSG behaves quite robust against the magnetic field up to 16 T, but fades away with increasing the temperature. Most importantly, we find that the magnitude of the NSG becomes larger with increasing point-contact junction resistance on the superconducting films, which is further enhanced in the non-superconducting samples of more oxygen disorders. The origination of NSG can be understood in the framework of Altshuler-Aronov-Lee (AAL) theory, where the disorder-induced electron-electron interactions suppress the density of states and thereby result in a soft Coulomb gap.
A comprehensive angle resolved photoemission spectroscopy study of the band structure in single layer cuprates is presented with the aim of uncovering universal trends across different materials. Five different hole- and electron-doped cuprate superconductors (La$_{1.59}$Eu$_{0.2}$Sr$_{0.21}$CuO$_4$, La$_{1.77}$Sr$_{0.23}$CuO$_4$, Bi$_{1.74}$Pb$_{0.38}$Sr$_{1.88}$CuO$_{6+delta}$, Tl$_{2}$Ba$_{2}$CuO$_{6+delta}$, and Pr$_{1.15}$La$_{0.7}$Ce$_{0.15}$CuO$_{4}$) have been studied with special focus on the bands with predominately $d$-orbital character. Using light polarization analysis, the $e_g$ and $t_{2g}$ bands are identified across these materials. A clear correlation between the $d_{3z^2-r^2}$ band energy and the apical oxygen distance $d_mathrm{A}$ is demonstrated. Moreover, the compound dependence of the $d_{x^2-y^2}$ band bottom and the $t_{2g}$ band top is revealed. Direct comparison to density functional theory (DFT) calculations employing hybrid exchange-correlation functionals demonstrates excellent agreement. We thus conclude that the DFT methodology can be used to describe the global band structure of overdoped single layer cuprates on both the hole and electron doped side.
In this paper, we review the low energy electronic structure of the kinetic energy driven d-wave cuprate superconductors. We give a general description of the charge-spin separation fermion-spin theory, where the constrained electron is decoupled as the gauge invariant dressed holon and spin. In particular, we show that under the decoupling scheme, the charge-spin separation fermion-spin representation is a natural representation of the constrained electron defined in a restricted Hilbert space without double electron occupancy. Based on the charge-spin separation fermion-spin theory, we have developed the kinetic energy driven superconducting mechanism, where the superconducting state is controlled by both superconducting gap parameter and quasiparticle coherence. Within this kinetic energy driven superconductivity, we have discussed the low energy electronic structure of the single layer and bilayer cuprate superconductors in both superconducting and normal states, and qualitatively reproduced all main features of the angle-resolved photoemission spectroscopy measurements on the single layer and bilayer cuprate superconductors. We show that the superconducting state in cuprate superconductors is the conventional Bardeen-Cooper-Schrieffer like with the d-wave symmetry, so that the basic Bardeen-Cooper-Schrieffer formalism with the d-wave gap function is still valid in discussions of the low energy electronic structure of cuprate superconductors, although the pairing mechanism is driven by the kinetic energy by exchanging spin excitations. We also show that the well pronounced peak-dip-hump structure of the bilayer cuprate superconductors in the superconducting state and double-peak structure in the normal state are mainly caused by the bilayer splitting.
We measure the temperature and frequency dependence of the complex Hall angle for normal state YBa$_2$Cu$_3$O$_7$ films from dc to far-infrared frequencies (20-250 cm$^{-1}$) using a new modulated polarization technique. We determine that the functional dependence of the Hall angle on scattering does not fit the expected Lorentzian response. We find spectral evidence supporting models of the Hall effect where the scattering $Gamma_H$ is linear in T, suggesting that a single relaxation rate, linear in temperature, governs transport in the cuprates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا