No Arabic abstract
We investigate the influence of confinement on phase separation in colloid-polymer mixtures. To describe the particle interactions, the colloid-polymer model of Asakura and Oosawa [J. Chem. Phys. 22, 1255 (1954)] is used. Grand canonical Monte Carlo simulations are then applied to this model confined between two parallel hard walls, separated by a distance D=5 colloid diameters. We focus on the critical regime of the phase separation and look for signs of crossover from three-dimensional (3D) Ising to two-dimensional (2D) Ising universality. To extract the critical behavior, finite size scaling techniques are used, including the recently proposed algorithm of Kim et al. [Phys. Rev. Lett. 91, 065701 (2003)]. Our results point to effective critical exponents that differ profoundly from 3D Ising values, and that are already very close to 2D Ising values. In particular, we observe that the critical exponent beta of the order parameter in the confined system is smaller than in 3D bulk, yielding a flatter binodal. Our results also show an increase in the critical colloid packing fraction in the confined system with respect to the bulk. The latter seems consistent with theoretical expectations, although subtleties due to singularities in the critical behavior of the coexistence diameter cannot be ruled out.
We extensively investigated the critical behavior of mixtures of colloids and polymers via the two-component Asakura-Oosawa model and its reduction to a one-component colloidal fluid using accurate theoretical and simulation techniques. In particular the theoretical approach, hierarchical reference theory [Adv. Phys. 44, 211 (1995)], incorporates realistically the effects of long-range fluctuations on phase separation giving exponents which differ strongly from their mean-field values, and are in good agreement with those of the three-dimensional Ising model. Computer simulations combined with finite-size scaling analysis confirm the Ising universality and the accuracy of the theory, although some discrepancy in the location of the critical point between one-component and full-mixture description remains. To assess the limit of the pair-interaction description, we compare one-component and two-component results.
We show that the critical behavior of a colloid-polymer mixture inside a random porous matrix of quenched hard spheres belongs to the universality class of the random-field Ising model. We also demonstrate that random-field effects in colloid-polymer mixtures are surprisingly strong. This makes these systems attractive candidates to study random-field behavior experimentally.
Monte Carlo simulations of the Asakura-Oosawa (AO) model for colloid-polymer mixtures confined between two parallel repulsive structureless walls are presented and analyzed in the light of current theories on capillary condensation and interface localization transitions. Choosing a polymer to colloid size ratio of q=0.8 and studying ultrathin films in the range of D=3 to D=10 colloid diameters thickness, grand canonical Monte Carlo methods are used; phase transitions are analyzed via finite size scaling, as in previous work on bulk systems and under confinement between identical types of walls. Unlike the latter work, inequivalent walls are used here: while the left wall has a hard-core repulsion for both polymers and colloids, at the right wall an additional square-well repulsion of variable strength acting only on the colloids is present. We study how the phase separation into colloid-rich and colloid-poor phases occurring already in the bulk is modified by such a confinement. When the asymmetry of the wall-colloid interaction increases, the character of the transition smoothly changes from capillary condensation-type to interface localization-type. The critical behavior of these transitions is discussed, as well as the colloid and polymer density profiles across the film in the various phases, and the correlation of interfacial fluctuations in the direction parallel to the confining walls. The experimental observability of these phenomena also is briefly discussed.
We study the dynamics of a knot in a semiflexible polymer confined to a narrow channel of width comparable to the polymers persistence length. Using a combination of Brownian dynamics simulations and a coarse-grained stochastic model, we characterize the coupled dynamics of knot size variation and knot diffusion along the polymer, which ultimately leads to spontaneous unknotting. We find that the knot grows to macroscopic size before disappearing. Interestingly, an external force applied to the ends of the confined polymer speeds up spontaneous unknotting.
The critical behavior of the Widom-Rowlinson mixture [J. Chem. Phys. 52, 1670 (1970)] is studied in d=3 dimensions by means of grand canonical Monte Carlo simulations. The finite size scaling approach of Kim, Fisher, and Luijten [Phys. Rev. Lett. 91, 065701 (2003)] is used to extract the order parameter and the coexistence diameter. It is demonstrated that the critical behavior of the diameter is dominated by a singular term proportional to t^(1-alpha), with t the relative distance from the critical point, and alpha the critical exponent of the specific heat. No sign of a term proportional to t^(2beta) could be detected, with beta the critical exponent of the order parameter, indicating that pressure-mixing in this model is small. The critical density is measured to be rho*sigma^3 = 0.7486 +/- 0.0002, with sigma the particle diameter. The critical exponents alpha and beta, as well as the correlation length exponent nu, are also measured and shown to comply with d=3 Ising criticality.