No Arabic abstract
We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga[1-x]Mn[x]As thin films. A magnetization gradient is observed for two as-grown films and originates from a nonuniformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga[1-x]Mn[x]As films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive to initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga[1-x]Mn[x]As, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films.
The magnetic properties of as-grown Ga$_{1-x}$Mn$_{x}$As have been investigated by the systematic measurements of temperature and magnetic field dependent soft x-ray magnetic circular dichroism (XMCD). The {it intrinsic} XMCD intensity at high temperatures obeys the Curie-Weiss law, but residual spin magnetic moment appears already around 100 K, significantly above Curie temperature ($T_C$), suggesting that short-range ferromagnetic correlations are developed above $T_C$. The present results also suggest that antiferromagnetic interaction between the substitutional and interstitial Mn (Mn$_{int}$) ions exists and that the amount of the Mn$_{int}$ affects $T_C$.
We have studied the depth-dependent magnetic and structural properties of as-grown and optimally annealed Ga[1-x]Mn[x]As films using polarized neutron reflectometry. In addition to increasing total magnetization, the annealing process was observed to produce a significantly more homogeneous distribution of the magnetization. This difference in the films is attributed to the redistribution of Mn at interstitial sites during the annealing process. Also, we have seen evidence of significant magnetization depletion at the surface of both as-grown and annealed films.
We report on the magnetic and the electronic properties of the prototype dilute magnetic semiconductor Ga$_{1-x}$Mn$_x$As using infrared (IR) spectroscopy. Trends in the ferromagnetic transition temperature $T_C$ with respect to the IR spectral weight are examined using a sum-rule analysis of IR conductivity spectra. We find non-monotonic behavior of trends in $T_C$ with the spectral weight to effective Mn ratio, which suggest a strong double-exchange component to the FM mechanism, and highlights the important role of impurity states and localization at the Fermi level. Spectroscopic features of the IR conductivity are tracked as they evolve with temperature, doping, annealing, As-antisite compensation, and are found only to be consistent with an Mn-induced IB scenario. Furthermore, our detailed exploration of these spectral features demonstrates that seemingly conflicting trends reported in the literature regarding a broad mid-IR resonance with respect to carrier density in Ga$_{1-x}$Mn$_x$As are in fact not contradictory. Our study thus provides a consistent experimental picture of the magnetic and electronic properties of Ga$_{1-x}$Mn$_x$As.
We have investigated the electronic structure of the $p$-type diluted magnetic semiconductor In$_{1-x}$Mn$_x$As by photoemission spectroscopy. The Mn 3$d$ partial density of states is found to be basically similar to that of Ga$_{1-x}$Mn$_x$As. However, the impurity-band like states near the top of the valence band have not been observed by angle-resolved photoemission spectroscopy unlike Ga$_{1-x}$Mn$_x$As. This difference would explain the difference in transport, magnetic and optical properties of In$_{1-x}$Mn$_x$As and Ga$_{1-x}$Mn$_x$As. The different electronic structures are attributed to the weaker Mn 3$d$ - As 4$p$ hybridization in In$_{1-x}$Mn$_x$As than in Ga$_{1-x}$Mn$_x$As.
We have measured the magnetoresistance in a series of Ga$_{1-x}$Mn$_x$As samples with 0.033$le x le$ 0.053 for three mutually orthogonal orientations of the applied magnetic field. The spontaneous resistivity anisotropy (SRA) in these materials is negative (i.e. the sample resistance is higher when its magnetization is perpendicular to the measuring current than when the two are parallel) and has a magnitude on the order of 5% at temperatures near 10K and below. This stands in contrast to the results for most conventional magnetic materials where the SRA is considerably smaller in magnitude for those few cases in which a negative sign is observed. The magnitude of the SRA drops from its maximum at low temperatures to zero at T$_C$ in a manner that is consistent with mean field theory. These results should provide a significant test for emerging theories of transport in this new class of materials.