Do you want to publish a course? Click here

Three-body recombination of ultracold Bose gases using the truncated Wigner method

44   0   0.0 ( 0 )
 Added by Crispin Gardiner
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply the truncated Wigner method to the process of three-body recombination in ultracold Bose gases. We find that within the validity regime of the Wigner truncation for two-body scattering, three-body recombination can be treated using a set of coupled stochastic differential equations that include diffusion terms, and can be simulated using known numerical methods. As an example we investigate the behaviour of a simple homogeneous Bose gas.

rate research

Read More

We develop and utilize the SU(3) truncated Wigner approximation (TWA) in order to analyze far-from-equilibrium quantum dynamics of strongly interacting Bose gases in an optical lattice. Specifically, we explicitly represent the corresponding Bose--Hubbard model at an arbitrary filling factor with restricted local Hilbert spaces in terms of SU(3) matrices. Moreover, we introduce a discrete Wigner sampling technique for the SU(3) TWA and examine its performance as well as that of the SU(3) TWA with the Gaussian approximation for the continuous Wigner function. We directly compare outputs of these two approaches with exact computations regarding dynamics of the Bose--Hubbard model at unit filling with a small size and that of a fully-connected spin-1 model with a large size. We show that both approaches can quantitatively capture quantum dynamics on a timescale of $hbar/(Jz)$, where $J$ and $z$ denote the hopping energy and the coordination number. We apply the two kinds of SU(3) TWA to dynamical spreading of a two-point correlation function of the Bose--Hubbard model on a square lattice with a large system size, which has been measured in recent experiments. Noticeable deviations between the theories and experiments indicate that proper inclusion of effects of the spatial inhomogeneity, which is not straightforward in our formulation of the SU(3) TWA, may be necessary.
We predict the resonance enhanced magnetic field dependence of atom-dimer relaxation and three-body recombination rates in a $^{87}$Rb Bose-Einstein condensate (BEC) close to 1007 G. Our exact treatments of three-particle scattering explicitly include the dependence of the interactions on the atomic Zeeman levels. The Feshbach resonance distorts the entire diatomic energy spectrum causing interferences in both loss phenomena. Our two independent experiments confirm the predicted recombination loss over a range of rate constants that spans four orders of magnitude.
108 - R. S. Fletcher , X. L. Zhang , 2007
Three-body recombination, an important collisional process in plasmas, increases dramatically at low electron temperatures, with an accepted scaling of T_e^-9/2. We measure three-body recombination in an ultracold neutral xenon plasma by detecting recombination-created Rydberg atoms using a microwave-ionization technique. With the accepted theory (expected to be applicable for weakly-coupled plasmas) and our measured rates we extract the plasma temperatures, which are in reasonable agreement with previous measurements early in the plasma lifetime. The resulting electron temperatures indicate that the plasma continues to cool to temperatures below 1 K.
We demonstrate the implications of Efimov physics in the recently measured recombination rate of Cesium-133 atoms. By employing previously calculated results for the energy dependence of the recombination rate of Helium-4 atoms, we obtain three independent scaling functions that are capable of describing the recombination rates over a large energy range for identical bosons with large scattering length. We benchmark these and previously obtained scaling functions by successfully comparing their predictions with full atom-dimer phase shift calculations with artificial Helium-4 potentials yielding large scattering lengths. Exploiting universality, we finally use these functions to determine the 3-body recombination rate of Cesium-133 atoms with large positive scattering length, compare our results to experimental data obtained by the Innsbruck group and find excellent agreement.
113 - Yu. Kagan , L.A. Manakova 2007
A mechanism for the formation of a new type of stationary state with macroscopical number of phonons in condensed atomic gases is proposed. This mechanism is based on generating longitudinal phonons as a result of parametric resonance caused by a permanent modulation of the transverse trap frequency in an elongated trap. The phonon-phonon interaction predetermines the self-consistent evolution which is completed with macroscopic population of one from all levels within the energy interval of parametric amplification. This level proves to be shifted to the edge of this interval. All other levels end the evolution with zero population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا