Do you want to publish a course? Click here

Effects of calcium substitution on the superconducting properties of R(1-x)CaxBa2Cu3Oz (R=Eu, Gd, Er; 0=<x<=0.3)polycrystalline samples

177   0   0.0 ( 0 )
 Added by Elena Nazarova
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The influence of Ca substitution on the superconducting properties of polycrystalline R1-xCaxBa2Cu3Oz (R = Eu, Gd, Er; x=0; 0.2; 0.25 and 0.3) samples has been studied by X-ray powder diffraction, ac susceptibility and dc magnetization measurements. The superconducting parameters such as critical temperature, inter- and intra-granular critical current and flux pinning are found to be strongly dependent both on Ca content and type of R element. The best combination of these parameters is found for the system Gd1-xCaxBa2Cu3Oz forming R1+yBa2-yCu3Oz clusters. The level of overdoping and the type of intergrain connection, were found to be influenced by the R element and the Ca concentration. Flux pinning in Gd1-xCaxBa2Cu3Oz is connected with the presence of R1+yBa2-yCu3Oz clusters.



rate research

Read More

167 - M. Pozek , I. Kupcic , A. Dulcic 2007
Ru{1-x}Sn{x}Sr2EuCu2O8 and Ru{1-x}Sn{x}Sr2GdCu2O8 have been comprehensively studied by microwave and dc resistivity and magnetoresistivity and by the dc Hall measurements. The magnetic ordering temperature T_m is considerably reduced with increasing Sn content. However, doping with Sn leads to only slight reduction of the superconducting critical temperature T_c accompanied with the increase of the upper critical field B_c2, indicating an increased disorder in the system and a reduced scattering length of the conducting holes in CuO2 layers. In spite of the increased scattering rate, the normal state resistivity and the Hall resistivity are reduced with respect to the pure compound, due to the increased number of itinerant holes in CuO2 layers, which represent the main conductivity channel. Most of the electrons in RuO2 layers are presumably localized, but the observed negative magnetoresistance and the extraordinary Hall effect lead to the conclusion that there exists a small number of itinerant electrons in RuO$_2$ layers that exhibit colossal magnetoresistance.
We report on structural and superconducting properties of La(3-x)R(x)Ni2B2N3 where La is substituted by the magnetic rare-earth elements Ce, Pr, Nd. The compounds Pr3Ni2B2N3 and Nd3Ni2B2N3 are characterized for the first time. Powder X-ray diffraction confirmed all samples R3Ni2B2N3 with R = La, Ce, Pr, Nd and their solid solutions to crystallize in the body centered tetragonal La3Ni2B2N3 structure type. Superconducting and magnetic properties of La(3-x)R(x)Ni2B2N3 were studied by resistivity, specific heat and susceptibility measurements. While La3Ni2B2N3 has a superconducting transition temperature Tc ~ 14 K, substitution of La by Ce, Pr, and Nd leads to magnetic pair breaking and, thus, to a gradual suppression of superconductivity. Pr3Ni2B2N3 exibits no long range magnetic order down to 2 K, Nd3Ni2B2N3 shows ferrimagnetic ordering below T_C = 17 K and a spin reorientation transition to a nearly antiferromagnetic state at 10 K.
Despite its unique structural features, the magnetism of single-layered cuprate with five oxygen coordination ($T$*-type structure) has not been investigated thus far. Here, we report the results of muon spin relaxation and magnetic susceptibility measurements to elucidate the magnetism of $T$*-type La$_{1-x/2}$Eu$_{1-x/2}$Sr$_x$CuO$_4$ (LESCO) via magnetic Fe- and non-magnetic Zn-substitution. We clarified the inducement of the spin-glass (SG)-like magnetically ordered state in La$_{1-x/2}$Eu$_{1-x/2}$Sr$_x$Cu$_y$Fe$_{1-y}$O$_4$ with $x = 0.24 + y$, and the non-magnetic state in La$_{1-x/2}$Eu$_{1-x/2}$Sr$_x$Cu$_y$Zn$_{1-y}$O$_4$ with $x$ = 0.24 after the suppression of superconductivity for $y$ $geq$ 0.025. The SG state lies below $sim$7 K in a wide Sr concentration range between 0.19 and 0.34 in 5$%$ Fe-substituted LESCO. The short-range SG state is consistent with that originating from the Ruderman-Kittel-Kasuya-Yosida interaction in a metallic state. Thus, the results provide the first evidence for Fermi liquid (FL) state in the pristine $T$*-type LESCO. Taking into account the results of an oxygen $K$-edge X-ray absorption spectroscopy measurement $[$J. Phys. Soc. Jpn. 89, 075002 (2020)$]$ reporting the actual hole concentrations in LESCO, our results demonstrate the existence of the FL state in a lower hole-concentration region, compared to that in $T$-type La$_{2-x}$Sr$_x$CuO$_4$. The emergence of the FL state in a lower hole-concentration region is possibly associated with a smaller charge transfer gap energy in the parent material with five oxygen coordination.
194 - Ya-Bin Liu , Yi Liu , Yan-Wei Cui 2021
We report the Ni-doping effect on magnetism and superconductivity (SC) in an Eu-containing 112-type system Eu(Fe$_{1-x}$Ni$_{x})$As$_{2}$ ($0leq xleq 0.15$) by the measurements of resistivity, magnetization, and specific heat. The undoped EuFeAs$_2$ undergoes a spin-density-wave (SDW) transition at $T_mathrm{SDW}sim$ 105 K in the Fe sublattice and a magnetic ordering at $T_mathrm{m}sim$ 40 K in the Eu sublattice. Complex Eu-spin magnetism is manifested by a spin-glass reentrance at $T_mathrm{SG}sim$ 15 K and an additional spin reorientation at $T_mathrm{SR}sim$ 7 K. With Ni doping, the SDW order is rapidly suppressed, and SC emerges in the Ni-doping range of 0.01 $leq xleq$ 0.1 where a maximum of the superconducting transition temperature $T_mathrm{c}^{mathrm{max}}=$ 17.6 K shows up at $x$ = 0.04. On the other hand, $T_mathrm{m}$ decreases very slowly, yet $T_mathrm{SG}$ and $T_mathrm{SR}$ hardly change with the Ni doping. The phase diagram has been established, which suggests a very weak coupling between SC and Eu spins. The complex Eu-spin magnetism is discussed in terms of the Ruderman-Kittel-Kasuya-Yosida interactions mediated by the conduction electrons from both layers of FeAs and As surrounding Eu$^{2+}$ ions.
We have studied the chemical potential shift in the high-temperature superconductor Bi$_2$Sr$_2$Ca$_{1-x}${it R}$_{x}$Cu$_2$O$_{8+y}$ ({it R} = Pr, Er), where the hole concentration is varied from 0.025 to 0.17 per Cu, by precise measurements of core-level photoemission spectra. The result shows that the shift becomes slow in the underdoped region as in the case of La$_{2-x}$Sr$_{x}$CuO$_{4}$ (LSCO) but the effect is much weaker than in LSCO. The observed shift in the present system can be relatively well explained by numerical results on the doped two-dimensional Hubbard model, and suggests that the change of the electronic structure induced by hole doping is less influenced by stripe fluctuations than in LSCO.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا