Vortex structure in spinor F=2 Bose-Einstein condensates


Abstract in English

Extended Gross-Pitaevskii equations for the rotating F=2 condensate in a harmonic trap are solved both numerically and variationally using trial functions for each component of the wave function. Axially-symmetric vortex solutions are analyzed and energies of polar and cyclic states are calculated. The equilibrium transitions between different phases with changing of the magnetization are studied. We show that at high magnetization the ground state of the system is determined by interaction in density channel, and at low magnetization spin interactions play a dominant role. Although there are five hyperfine states, all the particles are always condensed in one, two or three states. Two novel types of vortex structures are also discussed.

Download