Do you want to publish a course? Click here

Frustrated Polyelectrolyte Bundles and T=0 Josephson-Junction Arrays

287   0   0.0 ( 0 )
 Added by Gregory Grason
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We establish a one-to-one mapping between a model for hexagonal polyelectrolyte bundles and a model for two-dimensional, frustrated Josephson-junction arrays. We find that the T=0 insulator-to-superconductor transition of the {it quantum} system corresponds to a continuous liquid-to-solid transition of the condensed charge in the finite temperature {it classical} system. We find that the role of the vector potential in the quantum system is played by elastic strain in the classical system. Exploiting this correspondence we show that the transition is accompanied by a spontaneous breaking of chiral symmetry and that at the transition the polyelectrolyte bundle adopts a universal response to shear.

rate research

Read More

Coulomb drag and depinning are electronic transport phenomena that occur in low-dimensional nanostructures. Recently, both phenomena have been reported in bilinear Josephson junction arrays. These devices provide a unique opportunity to study the interplay of Coulomb drag and depinning in a system where all relevant parameters can be controlled experimentally. We explain the Coulomb drag and depinning characteristics in the I-V curve of the bilinear Josephson junction array by adopting a quasicharge model which has previously proven useful in describing threshold phenomena in linear Josephson junction arrays. Simulations are performed for a range of coupling strengths, where numerically obtained I-V curves match well with what has been previously observed experimentally. Analytic expressions for the ratio between the active and passive currents are derived from depinning arguments. Novel phenomena are predicted at voltages higher than those for which experimental results have been reported to date.
106 - Qing-Hu Chen , Lei-Han Tang , 2001
We report large-scale simulations of the resistively-shunted Josephson junction array in strip geometry. As the strip width increases, the voltage first decreases following the dynamic scaling ansatz proposed by Minnhagen {it et al.} [Phys. Rev. Lett. {bf 74}, 3672 (1995)], and then rises towards the asymptotic value predicted by Ambegaokar {it et al.} [Phys. Rev. Lett. {bf 40}, 783 (1978)]. The nonmonotonic size-dependence is attributed to shortened life time of free vortices in narrow strips, and points to the danger of single-scale analysis applied to a charge-neutral superfluid state.
We investigate mesoscopic Josephson junction arrays created by patterning superconducting disks on monolayer graphene, concentrating on the high-$T/T_c$ regime of these devices and the phenomena which contribute to the superconducting glass state in diffusive arrays. We observe features in the magnetoconductance at rational fractions of flux quanta per array unit cell, which we attribute to the formation of flux-quantized vortices. The applied fields at which the features occur are well described by Ginzburg-Landau simulations that take into account the number of unit cells in the array. We find that the mean conductance and universal conductance fluctuations are both enhanced below the critical temperature and field of the superconductor, with greater enhancement away from the graphene Dirac point.
Recent experiments on Josephson junction arrays (JJAs) in microwave cavities have opened up a new avenue for investigating the properties of these devices while minimising the amount of external noise coming from the measurement apparatus itself. These experiments have already shown promise for probing many-body quantum effects in JJAs. In this work, we develop a general theoretical description of such experiments by deriving a quantum phase model for planar JJAs containing quantized vortices. The dynamical susceptibility of this model is calculated for some simple circuits, and signatures of the injection of additional vortices are identified. The effects of decoherence are considered via a Lindblad master equation.
We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite size aggregates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا