Kondo coupling of f and conduction electrons is a common feature of f-electron intermetallics. Similar effects should occur in carbon ring systems(metallocenes). Evidence for Kondo coupling in Ce(C8H8)2 (cerocene) and the ytterbocene Cp*2Yb(bipy) is reported from magnetic susceptibility and L_III-edge x-ray absorption spectroscopy. These well-defined systems provide a new way to study the Kondo effect on the nanoscale, should generate insight into the Anderson Lattice problem, and indicate the importance of this often-ignored contribution to bonding in organometallics.
Recent advancement in fabrication technologies enable the construction of nano-objects with rather rich internal structures such as double or triple quantum dots, which can then be regarded as artificial molecules. The main new ingredient in the study of the Kondo effect in such artificial (and also in natural) molecules is the internal symmetry of the nano-object, which proves to play a crucial role in the construction of the effective exchange Hamiltonian. This internal symmetry combines continuous spin symmetry SU(2) and discrete point symmetry (such as mirror reflections for double dots or discrete $C_{3v}$ rotation for equilateral triangular dots. When these artificial molecules are attached to metallic leads, the set of dot operators appearing in the effective exchange Hamiltonian generate a group which is refereed to as the dynamical symmetry group of the system dot-leads [mostly SO(n) or SU(n)], and the pertinent group parameters (such as the value of $n$) can be controlled by experiment. In this short review we clarify and expand these concepts and discuss some specific examples. In particular we concentrate on the difference between the chain geometry and the ring geometry. When a perpendicular magnetic field is applied in the ring geometry, its gauge symmetry U(1) is involved in the interplay with the spin and orbital dynamics of the dot.
Linear atomic chains containing a single Kondo atom, Co, and several nonmagnetic atoms, Cu, were assembled atom by atom on Cu(111) with the tip of a scanning tunneling microscope. The resulting one-dimensional wires, Cu$_m$CoCu$_n$ ($0leq m, nleq 5$), exhibit a rich evolution of the single-Co Kondo effect with the variation of $m$ and $n$, as inferred from changes in the line shape of the Abrikosov-Suhl-Kondo resonance. The most striking result is the quenching of the resonance in CuCoCu$_2$ and Cu$_2$CoCu$_2$ clusters. State-of-the-art first-principles calculations were performed to unravel possible microscopic origins of the remarkable experimental observations.
Stable organic radicals integrated into molecular junctions represent a practical realization of the single-orbital Anderson impurity model. Motivated by recent experiments for perchlorotriphenylmethyl (PTM) molecules contacted to gold electrodes, we develop a method that combines density functional theory (DFT), quantum transport theory, numerical renormalization group (NRG) calculations and renormalized super-perturbation theory (rSPT) to compute both equilibrium and non-equilibrium properties of strongly correlated nanoscale systems at low temperatures effectively from first principles. We determine the possible atomic structures of the interfaces between the molecule and the electrodes, which allow us to estimate the Kondo temperature and the characteristic transport properties, which compare well with experiments. By using the non-equilibrium rSPT results we assess the range of validity of equilibrium DFT+NRG-based transmission calculations for the evaluation of the finite voltage conductance. The results demonstrate that our method can provide qualitative insights into the properties of molecular junctions when the molecule-metal contacts are amorphous or generally ill-defined, and that it can further give a fully quantitative description when the experimental contact structures are well characterized.
The tip of a low-temperature scanning tunneling microscope is brought into contact with individual Kondo impurities (cobalt atoms) adsorbed on a Cu(100) surface. A smooth transition from the tunneling regime to a point contact with a conductance of $Gapproxtext{G}_0$ occurs. Spectroscopy in the contact regime, {it i. e.}, at currents in a $mutext{A}$ range was achieved. A modified line shape is observed indicating a significant change of the Kondo temperature $T_{text{K}}$ at contact. Model calculations indicate that the proximity of the tip shifts the cobalt $d$-band and thus affects $T_{text{K}}$.
We show that a self-assembled phase of potassium (K) doped single-layer para-sexiphenyl (PSP) film on gold substrate is an excellent platform for studying the two-impurity Kondo model. On K-doped PSP molecules well separated from others, we find a Kondo resonance peak near EF with a Kondo temperature of about 30 K. The Kondo resonance peak splits when another K-doped PSP molecule is present in the vicinity, and the splitting gradually increases with the decreased inter-molecular distance, with no signs of phase transition. Our data demonstrate how a Kondo singlet state gradually evolves into an antiferromagnetic singlet state due to the competition between Kondo screening and antiferromagnetic RKKY coupling, as described in the two-impurity Kondo model. Intriguingly, the antiferromagnetic singlet is destroyed quickly upon increasing temperature and transforms back to a Kondo singlet well below the Kondo temperature. Our data provide a comprehensive picture and quantitative constraints on related theories and calculations of two-impurity Kondo model.