No Arabic abstract
BaCuSi$_2$O$_6$, a $S=1/2$ quantum antiferromagnet with a double-layer structure of Cu$^{2+}$ ions in a distorted planar-rectangular coordination and with a dimerized spin singlet ground state, is studied by means of the electron paramagnetic resonance technique. It is argued that multiple absorptions observed at low temperatures are intimately related to a thermally-activated spin-triplet exciton superstructure. Analysis of the angular dependence of exciton modes in BaCuSi$_2$O$_6$ allows us to accurately estimate anisotropy parameters. In addition, the temperature dependence of EPR intensity and linewidth is discussed.
We have investigated the electron spin resonance (ESR) on single crystals of BaCu$_2$Ge$_2$O$_7$ at temperatures between 300 and 2 K and in a large frequency band, 9.6 -134 GHz, in order to test the predictions of a recent theory, proposed by Oshikawa and Affleck (OA), which describes the ESR in a $S$=1/2 Heisenberg chain with the Dzyaloshinskii-Moriya interaction. We find, in particular, that the ESR linewidth, $Delta H$, displays a rich temperature behavior. As the temperature decreases from $T_{max}/2approx $ 170 K to 50 K, $Delta H$ shows a rapid and linear decrease, $Delta H sim T$. At low temperatures, below 50 K, $Delta H$ acquires a strong dependence on the magnetic field orientation and for $H | c$ it shows a $(h/T)^2$ behavior which is due to an induced staggered field $h$, according to OAs prediction.
The spin-1/2 square-lattice Heisenberg model is predicted to have a quantum disordered ground state when magnetic frustration is maximized by competing nearest-neighbor $J_1$ and next-nearest-neighbor $J_2$ interactions ($J_2/J_1 approx 0.5$). The double perovskites Sr$_2$CuTeO$_6$ and Sr$_2$CuWO$_6$ are isostructural spin-1/2 square-lattice antiferromagnets with Neel ($J_1$ dominates) and columnar ($J_2$ dominates) magnetic order, respectively. Here we characterize the full isostructural solid solution series Sr$_2$Cu(Te$_{1-x}$W$_x$)O$_6$ ($0 leq x leq 1$) tunable from Neel order to quantum disorder to columnar order. A spin-liquid-like ground state was previously observed for the $x$ = 0.5 phase, but we show that the magnetic order is suppressed below 1.5 K in a much wider region of $x approx$ 0.1-0.6. This coincides with significant $T$-linear terms in the low-temperature specific heat. However, density functional theory calculations predict most of the materials are not in the highly frustrated $J_2/J_1 approx 0.5$ region square-lattice Heisenberg model. Thus, a combination of both magnetic frustration and quenched disorder is the likely origin of the spin-liquid-like state in $x$ = 0.5.
We report an investigation on structure and magnetic properties of the $S=3/2$ zigzag spin chain compound BaCoTe$_2$O$_7$. Neutron diffraction measurements reveal BaCoTe$_2$O$_7$ crystallizes in the noncentrosymmetric space group $Ama2$ with a canted $uparrowuparrowdownarrowdownarrow$ spin structure along the quasi-one-dimensional zigzag chain and a moment size of $1.89(2)mu_B$ at 2 K. Magnetic susceptibility and specific heat measurements yield an antiferromagnetic phase transition at $T_N=6.2$ K. A negative Curie-Weiss temperature $Theta_{CW}=-74.7(2)$ K and an empirical frustration parameter of $f=|Theta_text{CW}|/T_text{N}approx12$ is obtained from fitting the magnetic susceptibility, indicating antiferromagnetic interactions and strong magnetic frustration. By employing ultraviolet-visible absorption spectroscopy and first principles calculations, an indirect band gap of 2.68(2) eV is determined. We propose that the canted zigzag spin chain of BaCoTe$_2$O$_7$ may produce a change of the polarization via exchange striction mechanism.
A layered triangular lattice with spin-1/2 ions is an ideal platform to explore highly entangled exotic states like quantum spin liquid (QSL). Here, we report a systematic in-field neutron scattering study on a perfect two-dimensional triangular-lattice antiferromagnet, CsYbSe$_2$, a member of the large QSL candidate family rare-earth chalcogenides. The elastic neutron scattering measured down to 70 mK shows that there is a short-range 120$^{circ}$ magnetic order at zero field. In the field-induced ordered states, the spin-spin correlation lengths along the $c$ axis are relatively short, although the heat capacity results indicate long-range magnetic orders at 3 T $-$ 5 T. The inelastic neutron scattering spectra evolve from highly damped continuum-like excitations at zero field to relatively sharp spin wave modes at the plateau phase. Our extensive large-cluster density-matrix renormalization group calculations with a Heisenberg triangular-lattice nearest-neighbor antiferromagnetic model reproduce the essential features of the experimental spectra, including continuum-like excitations at zero field, series of sharp magnons at the plateau phase as well as two-magnon excitations at high energy. This work presents comprehensive experimental and theoretical overview of the unconventional field-induced spin dynamics in triangular-lattice Heisenberg antiferromagnet and thus provides valuable insight into quantum many-body phenomena.
Remarkably, doping isovalent $d^{10}$ and $d^0$ cations onto the $B$ site in $A_2B$$B$O$_6$ double perovskites has the power to direct the magnetic interactions between magnetic $B$ cations. This is due to changes in orbital hybridization, which favors different superexchange pathways, and leads to the formation of alternative magnetic structures depending on whether $B$ is $d^{10}$ or $d^0$. Furthermore, the competition generated by introducing mixtures of $d^{10}$ and $d^0$ cations can drive the material into the realms of exotic quantum magnetism. Here, a W$^{6+}$ $d^0$ dopant was introduced to a $d^{10}$ hexagonal perovskite Ba$_2$CuTeO$_6$, which possesses a spin ladder geometry of Cu$^{2+}$ cations, creating a Ba$_2$CuTe$_{1-x}$W$_x$O$_6$ solid solution ($x$ = 0 - 0.3). Neutron and synchrotron X-ray diffraction show that W$^{6+}$ is almost exclusively substituted for Te$^{6+}$ on the corner-sharing site within the spin ladder, in preference to the face-sharing site between ladders. This means the intra-ladder interactions are selectively tuned by the $d^0$ cations. Bulk magnetic measurements suggest this suppresses magnetic ordering in a similar manner to that observed for the spin-liquid like material Sr$_2$CuTe$_{1-x}$W$_x$O$_6$. This further demonstrates the utility of $d^{10}$ and $d^0$ dopants as a tool for tuning magnetic ground states in a wide range of perovskites and perovskite-derived structures.