Do you want to publish a course? Click here

In-plane ferromagnetism in charge-ordering $Na_{0.55}CoO_2$

65   0   0.0 ( 0 )
 Added by X. H. Chen
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetic and transport properties are systematically studied on the single crystal $Na_{0.55}CoO_2$ with charge ordering and divergency in resistivity below 50 K. A long-range ferromagnetic ordering is observed in susceptibility below 20 K with the magnetic field parallel to Co-O plane, while a negligible behavior is observed with the field perpendicular to the Co-O plane. It definitely gives a direct evidence for the existence of in-plane ferromagnetism below 20 K. The observed magnetoresistance (MR) of 30 % at the field of 6 T at low temperatures indicates an unexpectedly strong spin-charge coupling in triangle lattice systems.



rate research

Read More

Charge ordering behavior is observed in the crystal prepared through the immersion of the $Na_{0.41}CoO_2$ crystal in distilled water. Discovery of the charge ordering in the crystal with Na content less than 0.5 indicates that the immersion in water brings about the reduction of the $Na_{0.41}CoO_2$. The formal valence of Co changes from +3.59 estimated from the Na content to +3.5, the same as that in $Na_{0.5}CoO_2$. The charge compensation is confirmed to arise from the intercalation of the oxonium ions as occurred in the superconducting sodium cobalt oxide bilayer-hydrate.cite{takada1} The charge ordering is the same as that observed in $Na_{0.5}CoO_2$. It suggests that the Co valence of +3.5 is necessary for the charge ordering.
The CoO$_{2}$ layers in sodium-cobaltates Na$_{x}$CoO$_{2}$ may be viewed as a spin $S=1/2$ triangular-lattice doped with charge carriers. The underlying physics of the cobaltates is very similar to that of the high $T_{c}$ cuprates. We will present unequivocal $^{59}$Co NMR evidence that below $T_{CO}sim51 K$, the insulating ground state of the itinerant antiferromagnet Na$_{0.5}$CoO$_{2}$ ($T_{N}sim 86 K$) is induced by charge ordering.
Susceptibility, specific heat, and muon spin rotation measurements on high-quality single crystals of $rm Na_{0.82}CoO_2$ have revealed bulk antiferromagnetism with N{e}el temperature $rm T_N = 19.8 pm 0.1$ K and an ordered moment perpendicular to the $rm CoO_2$ layers. The magnetic order encompasses nearly 100% of the crystal volume. The susceptibility exhibits a broad peak around 30 K, characteristic of two-dimensional antiferromagnetic fluctuations. The in-plane resistivity is metallic at high temperatures and exhibits a minimum at $rm T_N$.
Measurements of polarization-dependent soft x-ray absorption reveal that the electronic states determining the low-energy excitations of Na$_{x}$CoO$_2$ have predominantly $a_{1g}$ symmetry with significant O $2p$ character. A large transfer of spectral weight observed in O $1s$ x-ray absorption provides spectral evidence for strong electron correlations in the layered cobaltates. Comparing Co $2p$ x-ray absorption with calculations based on a cluster model, we conclude that Na$_{x}$CoO$_2$ exhibits a charge-transfer electronic character rather than a Mott-Hubbard character.
Charge order has recently been identified as a leading competitor of high-temperature superconductivity in moderately doped cuprates. We provide a survey of universal and materials-specific aspects of this phenomenon, with emphasis on results obtained by scattering methods. In particular, we discuss the structure, periodicity, and stability range of the charge-ordered state, its response to various external perturbations, the influence of disorder, the coexistence and competition with superconductivity, as well as collective charge dynamics. In the context of this journal issue which honors Roger Cowleys legacy, we also discuss the connection of charge ordering with lattice vibrations and the central-peak phenomenon. We end the review with an outlook on research opportunities offered by new synthesis methods and experimental platforms, including cuprate thin films and superlattices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا