The temperature dependence of the magnetization and spin-polarization at the Fermi level is investigated for half-metallic ferromagnets. We reveal a new mechanism, where the hybridization of states forming the half-metallic gap depends on thermal spin fluctuations and the polarization can drop abruptly at temperatures much lower than the Curie point. We verify this for NiMnSb by ab-initio calculations. The thermal properties are studied by mapping ab-initio results to an extended Heisenberg model which includes longitudinal fluctuations and is solved by a Monte Carlo method.