A Three-dimensional simulation study of the performance of Carbon Nanotube Field Effect Transistors with doped reservoirs and realistic geometry


Abstract in English

In this work, we simulate the expected device performance and the scaling perspectives of Carbon nanotube Field Effect Transistors (CNT-FETs), with doped source and drain extensions. The simulations are based on the self-consistent solution of the 3D Poisson-Schroedinger equation with open boundary conditions, within the Non-Equilibrium Greens Function formalism, where arbitrary gate geometry and device architecture can be considered. The investigation of short channel effects for different gate configurations and geometry parameters shows that double gate devices offer quasi ideal subthreshold slope and DIBL without extremely thin gate dielectrics. Exploration of devices with parallel CNTs show that On currents per unit width can be significantly larger than the silicon counterpart, while high-frequency performance is very promising.

Download