Do you want to publish a course? Click here

3D-Hydrogen Analysis of Ferromagnetic Microstructures in Proton Irradiated Graphite

94   0   0.0 ( 0 )
 Added by Patrick Reichart
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, magnetic order in highly oriented pyrolytic graphite (HOPG) induced by proton broad- and microbeam irradiation was discovered. Theoretical models propose that hydrogen could play a major role in the magnetism mechanism. We analysed the hydrogen distribution of pristine as well as irradiated HOPG samples, which were implanted to micrometer-sized spots as well as extended areas with various doses of 2.25 MeV protons at the Leipzig microprobe LIPSION. For this we used the sensitive 3D hydrogen microscopy system at the Munich microprobe SNAKE. The background hydrogen level in pristine HOPG is determined to be less than 0.3 at-ppm. About 4.8e15 H-atoms/cm^2 are observed in the near-surface region (4 um depth resolution). The depth profiles of the implants show hydrogen located within a confined peak at the end of range, in agreement with SRIM Monte Carlo simulations, and no evidence of diffusion broadening along the c-axis. At sample with microspots, up to 40 at-% of the implanted hydrogen is not detected, providing support for lateral hydrogen diffusion.



rate research

Read More

Mechanical exfoliation is a widely used method to isolate high quality graphene layers from bulk graphite. In our recent experiments, some ordered microstructures, consisting of a periodic alternation of kinks and stripes, were observed in thin graphite flakes that were mechanically peeled from highly oriented pyrolytic graphite (HOPG). A theoretical model is presented in this paper to understand the formation of such ordered microstructures, based on elastic buckling of a graphite flake being subjected to a bending moment. The width of the stripes predicted from this model agrees reasonably well with our experimental measurements.
We present a x-ray dichroism study of graphite surfaces that addresses the origin and magnitude of ferromagnetism in metal-free carbon. We find that, in addition to carbon $pi$ states, also hydrogen-mediated electronic states exhibit a net spin polarization with significant magnetic remanence at room temperature. The observed magnetism is restricted to the top $approx$10 nm of the irradiated sample where the actual magnetization reaches $ simeq 15$ emu/g at room temperature. We prove that the ferromagnetism found in metal-free untreated graphite is intrinsic and has a similar origin as the one found in proton bombarded graphite.
Diamond displays a large variety of luminescence centers which define its optical properties and can be either created or modified by irradiation. The main purpose of the present work is to study the radiation hardness of several of such centers in homoepitaxial single crystal CVD diamond by following the evolution of photoluminescence and ionoluminescence upon 2 MeV proton irradiation. Luminescence decays were observed with values of the fluence at half of the starting luminescence (F1/2) of the order of 1014 cm-2. The 3H center displayed a non monotonic behavior, with a growing behavior and a subsequent decay with a rather high F1/2 value (in the order of few 1016 cm-2), maintaining at the highest fluences an intensity significantly higher than the blue A-band. A simple model based on a double-exponential trend was defined to fit with satisfactory accuracy the evolution of the 3H center. Several PL centers (namely: 3H, TR12, 491 nm, 494 nm) exhibited clear correlations and anti-correlations in their fluence dependences, which were considered in the attempt to acquire some insight into their possible alternative attributions.
The reported diffusion constants for hydrogen in silicon vary over six orders of magnitude. This spread in measured values is caused by the different concentrations of defects in the silicon that has been studied. Hydrogen diffusion is slowed down as it interacts with impurities. By changing the material properties such as the crystallinity, doping type and impurity concentrations, the diffusivity of hydrogen can be changed by several orders of magnitude. In this study the influence of the hydrogen concentration on the temperature dependence of the diffusion in high energy proton implanted silicon is investigated. We show that the Arrhenius parameters, which describe this temperature dependence decrease with increasing hydrogen concentration. We propose a model where the relevant defects that mediate hydrogen diffusion become saturated with hydrogen at high concentrations. When the defects that provide hydrogen with the lowest energy positions in the lattice are saturated, hydrogen resides at energetically less favorable positions and this increases the diffusion of hydrogen through the crystal. Furthermore, we present a survey of different studies on the diffusion of hydrogen. We observed a correlation of the Arrhenius parameters calculated in those studies, leading to a modification of the Arrhenius equation for the diffusion of hydrogen in silicon.
Graphite has been used as neutron moderator or reflector in many nuclear reactors. The irradiation of graphite in a nuclear reactor results in a complex population of defects. Heating of the irradiated graphite at high temperatures results in annihilation of the defects with release of an unusually large energy, called the Wigner energy. From various experiments on highly irradiated graphite samples from CIRUS reactor at Trombay and ab-initio simulations, we have for the first time identified various 2-, 3- and 4-coordinated topological structures in defected graphite, and provided microscopic mechanism of defect annihilation on heating and release of the Wigner energy. The annihilation process involves cascading cooperative movement of atoms in two steps involving an intermediate structure. Our work provides new insights in understanding of the defect topologies and annihilation in graphite which is of considerable importance to wider areas of graphitic materials including graphene and carbon nanotubes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا