Do you want to publish a course? Click here

Evidence for electronic phase separation between orbital orderings in SmVO3

55   0   0.0 ( 0 )
 Added by Marie-Helene Sage
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report evidence for phase coexistence of orbital orderings of different symmetry in SmVO$_3$ by high resolution X-Ray powder diffraction. The phase coexistence is triggered by an antiferromagnetic ordering of the vanadium spins near 130K, below an initial orbital ordering near 200K. The phase coexistence is the result of the intermediate ionic size of samarium coupled to exchange striction at the vanadium spin ordering.



rate research

Read More

175 - Yin Shi , Long-Qing Chen 2020
From thermodynamic analysis we demonstrate that during metal-insulator transitions in pure matters, a nonequilibrium homogeneous state may be unstable against charge density modulations with certain wavelengths, and thus evolves to the equilibrium phase through transient electronic phase separation. This phase instability occurs as two inequalities between the first and the second derivatives of the free energy with respect to the order parameter are fulfilled. The dominant wavelength of the modulated phase is also derived. The computer simulation further confirms the theoretical derivation. Employing the pre-established phase-field model of VO$_2$, we show that this transient electronic phase separation may take place in VO$_2$ upon photoexcitation.
Magnetic systems composed of weakly coupled spin-1/2 chains are fertile ground for hosting the fractional magnetic excitations that are intrinsic to interacting fermions in one-dimension (1D). However, the exotic physics arising from the quantum many-body interactions beyond 1D are poorly understood in materials of this class. Spinons and psinons are two mutually exclusive low-energy magnetic quasiparticles; the excitation seen depends on the ground state of the spin chain. Here, we present inelastic neutron scattering and neutron diffraction evidence for their coexistence in SrCo$_{2}$V$_{2}$O$_{8}$ at milli-Kelvin temperatures in part of the Neel phase (2.4 T $leq$ $mu_mathrm{{0}}$H $<$ 3.9 T) and possibly also the field-induced spin density wave phase up to the highest field probed ($mu_mathrm{{0}}$H $geq$ 3.9 T, $mu_mathrm{{0}}$H$_mathbf{mathrm{{max}}}$ = 5.5 T). These results unveil a novel spatial phase inhomogeneity for the weakly coupled spin chains in this compound. This quantum dynamical phase separation is a new phenomenon in quasi-1D quantum magnets, highlighting the non-trivial consequences of inter-chain coupling.
From measurements of fluctuation spectroscopy and weak nonlinear transport on the semimetallic ferromagnet EuB$_6$ we find direct evidence for magnetically-driven electronic phase separation consistent with the picture of percolation of magnetic polarons (MP), which form highly conducting magnetically-ordered clusters in a paramagnetic and poorly conducting background. These different parts of the conducting network are probed separately by the noise spectroscopy/nonlinear transport and the conventional linear resistivity. We suggest a comprehensive and universal scenario for the MP percolation, which occurs at a critical magnetization either induced by ferromagnetic order at zero field or externally applied magnetic fields in the paramagentic region.
54 - G. Maris , Y. Ren , V. Volotchaev 2003
We present powder and single crystal X-ray diffraction data as evidence for a monoclinic distortion in the low spin (S=0) and intermediate spin state (S=1) of LaCoO3. The alternation of short and long bonds in the ab plane indicates the presence of eg orbital ordering induced by a cooperative Jahn-Teller distortion. We observe an increase of the Jahn-Teller distortion with temperature in agreement with a thermally activated behavior of the Co3+ ions from a low-spin ground state to an intermediate-spin excited state.
By Cu NMR we studied the spin and charge structure in Nd_{2-x}Ce_{x}CuO_{4-delta}. For x=0.15, starting from a superconducting sample, the low temperature magnetic order in the sample reoxygenated under 1 bar oxygen at 900^0 C, reveals a peculiar modulation of the internal field, indicative for a phase characterized by large charge droplets (Blob-phase). By prolonged reoxygenation at 4 bar the blobs brake up and the spin structure changes to that of an ordered antiferromagnet (AF). We conclude that the superconductivity in the n-type systems competes with a genuine type I Mott-insulating state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا