No Arabic abstract
We redraw, using state-of-the-art methods for free-energy calculations, the phase diagrams of two reference models for the liquid state: the Gaussian and inverse-power-law repulsive potentials. Notwithstanding the different behavior of the two potentials for vanishing interparticle distances, their thermodynamic properties are similar in a range of densities and temperatures, being ruled by the competition between the body-centered-cubic (BCC) and face-centered-cubic (FCC) crystalline structures and the fluid phase. We confirm the existence of a reentrant BCC phase in the phase diagram of the Gaussian-core model, just above the triple point. We also trace the BCC-FCC coexistence line of the inverse-power-law model as a function of the power exponent $n$ and relate the common features in the phase diagrams of such systems to the softness degree of the interaction.
We trace with unprecedented numerical accuracy the phase diagram of the Gaussian-core model, a classical system of point particles interacting via a Gaussian-shaped, purely repulsive potential. This model, which provides a reliable qualitative description of the thermal behavior of interpenetrable globular polymers, is known to exhibit a polymorphic FCC-BCC transition at low densities and reentrant melting at high densities. Extensive Monte Carlo simulations, carried out in conjunction with accurate calculations of the solid free energies, lead to a thermodynamic scenario that is partially modified with respect to previous knowledge. In particular, we find that: i) the fluid-BCC-FCC triple-point temperature is about one third of the maximum freezing temperature; ii) upon isothermal compression, the model exhibits a fluid-BCC-FCC-BCC-fluid sequence of phases in a narrow range of temperatures just above the triple point. We discuss these results in relation to the behavior of star-polymer solutions and of other softly repulsive systems.
We test the validity of some widely used phenomenological criteria for the localization of the fluid-solid transition thresholds against the phase diagrams of particles interacting through the exp-6, inverse-power-law, and Gaussian potentials. We find that one-phase rules give, on the whole, reliable estimates of freezing/melting points. The agreement is ordinarily better for a face-centered-cubic solid than for a body-centered-cubic crystal, even more so in the presence of a pressure-driven re-entrant transition of the solid into a denser fluid phase, as found in the Gaussian-core model.
We study a simple model of a nematic liquid crystal made of parallel ellipsoidal particles interacting via a repulsive Gaussian law. After identifying the relevant solid phases of the system through a careful zero-temperature scrutiny of as many as e
We give two conditionally exactly solvable inverse power law potentials whose linearly independent solutions include a sum of two confluent hypergeometric functions. We notice that they are partner potentials and multiplicative shape invariant. The method used to find the solutions works with the two Schrodinger equations of the partner potentials. Furthermore we study some of the properties of these potentials.
Phase separation in a low-density gas-like phase and a high-density liquid-like one is a common trait of biological and synthetic self-propelling particles systems. The competition between motility and stochastic forces is assumed to fix the boundary between the homogeneous and the phase-separated phase. Here we demonstrate that motility does also promote the homogeneous phase allowing particles to resolve their collisions. This new understanding allows quantitatively predicting the spinodal-line of hard self-propelling Brownian particles, the prototypical model exhibiting a motility induced phase separation. Furthermore, we demonstrate that frictional forces control the physical process by which motility promotes the homogeneous phase. Hence, friction emerges as an experimentally variable parameter to control the motility induced phase diagram.