Funtionalized pentacene, 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), field-effect transistors(FETs) were made by thermal evaporation or solution deposition method and the mobility was measured as a function of temperature and light power. The field-effect mobility ($mu$$_{rm FET}$) has a gate-voltage dependent activation energy. A non-monotonic temperature dependence was observed at high gate voltage (V$_G$ $<$ -30 V) with activation energy E$_a$ $sim$ 60 - 170 meV,depending on the fabrication procedure. The gate-voltage dependent mobility and non-monotonic temperature dependence indicates that shallow traps play important role in the transport of TIPS-pentacene films. The current in the saturation regime as well as mobility increase upon light illumination and is proportional to the light intensity, mainly due to the photoconductive response. Transistors with submicron channel length showed unsaturating current-voltage characteristics due to the short channel effect. Realization of simple circuits such as NOT(inverter), NOR, and NAND logic gates are demonstrated for thin film TIPS-pentacene transistors.