Do you want to publish a course? Click here

Unified Multifractal Description of Velocity Increments Statistics in Turbulence: Intermittency and Skewness

93   0   0.0 ( 0 )
 Added by Laurent Chevillard
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The phenomenology of velocity statistics in turbulent flows, up to now, relates to different models dealing with either signed or unsigned longitudinal velocity increments, with either inertial or dissipative fluctuations. In this paper, we are concerned with the complete probability density function (PDF) of signed longitudinal increments at all scales. First, we focus on the symmetric part of the PDFs, taking into account the observed departure from scale invariance induced by dissipation effects. The analysis is then extended to the asymmetric part of the PDFs, with the specific goal to predict the skewness of the velocity derivatives. It opens the route to the complete description of all measurable quantities, for any Reynolds number, and various experimental conditions. This description is based on a single universal parameter function D(h) and a universal constant R*.



rate research

Read More

We analyze the statistics of turbulent velocity fluctuations in the time domain. Three cases are computed numerically and compared: (i) the time traces of Lagrangian fluid particles in a (3D) turbulent flow (referred to as the dynamic case); (ii) the time evolution of tracers advected by a frozen turbulent field (the static case), and (iii) the evolution in time of the velocity recorded at a fixed location in an evolving Eulerian velocity field, as it would be measured by a local probe (referred to as the virtual probe case). We observe that the static case and the virtual probe cases share many properties with Eulerian velocity statistics. The dynamic (Lagrangian) case is clearly different; it bears the signature of the global dynamics of the flow.
By analyzing trajectories of solid hydrogen tracers, we find that the distributions of velocity in decaying quantum turbulence in superfluid $^4$He are strongly non-Gaussian with $1/v^3$ power-law tails. These features differ from the near-Gaussian statistics of homogenous and isotropic turbulence of classical fluids. We examine the dynamics of many events of reconnection between quantized vortices and show by simple scaling arguments that they produce the observed power-law tails.
129 - Victor Dotsenko 2018
The problem of one-dimensional randomly forced Burgers turbulence is considered in terms of (1+1) directed polymers. In the limit of strong turbulence (which corresponds to the zero temperature limit for the directed polymer system) using the replica technique a general explicit expression for the joint distribution function of two velocities separated by a finite distance is derived. In particular, it is shown that at length scales much smaller than the injection length of the Burgers random force the moments of the velocity increment exhibit typical strong intermittency behavior.
68 - S. Bao , W. Guo , V. S. Lvov 2018
We report a detailed analysis of the energy spectra, second- and high-order structure functions of velocity differences in superfluid $^4$He counterflow turbulence, measured in a wide range of temperatures and heat fluxes. We show that the one-dimensional energy spectrum $E_{xz} (k_y)$ (averaged over the $xz$-plane, parallel to the channel wall), directly measured as a function of the wall-normal wave-vector $k_y$, gives more detailed information on the energy distribution over scales than the corresponding second-order structure function $S_{2}(delta_y)$. In particular, we discover two intervals of $k_y$ with different apparent exponents: $E_{xz} (k_y)propto k_y^{-m_C}$ for $klesssim k_times$ and $E_{xz} (k_y)propto k_y^{-m_F}$ for $kgtrsim k_times$. Here $k_times$ denotes wavenumber that separate scales with relatively strong (for $klesssim k_times$) and relatively weak (for $kgtrsim k_times$) coupling between the normal-fluid and superfluid velocity components. We interpret these $k$-ranges as cascade-dominated and mutual friction-dominated intervals, respectively. General behavior of the experimental spectra $E_{xz}(k_y)$ agree well with the predicted spectra [Phys. Rev. B 97, 214513 (2018)]. Analysis of the $n$-th order structure functions statistics shows that in the energy-containing interval the statistics of counterflow turbulence is close to Gaussian, similar to the classical hydrodynamic turbulence. In the cascade- and mutual friction-dominated intervals we found some modest enhancement of intermittency with respect of its level in classical turbulence. However, at small scales, the intermittency becomes much stronger than in the classical turbulence.
484 - M. Alber , S. Lueck , C. Renner 2000
The notion of self-similar energy cascades and multifractality has long since been connected with fully developed, homogeneous and isotropic turbulence. We introduce a number of amendments to the standard methods for analysing the multifractal properties of the energy dissipation field of a turbulent flow. We conjecture that the scaling assumption for the moments of the energy dissipation rate is valid within the transition range to dissipation introduced by Castaing et al.(Physica D (46), 177 (1990)). The multifractal spectral functions appear to be universal well within the error margins and exhibit some as yet undiscussed features. Furthermore, this universality is also present in the neither homogeneous nor isotropic flows in the wake very close to a cylinder or the off-centre region of a free jet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا