Do you want to publish a course? Click here

2D Ferromagnetism in the High-Tc Analogue Cs_2AgF_4

246   0   0.0 ( 0 )
 Added by Ted Barnes
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although the precise mechanism of high-Tc superconductivity in the layered cuprates remains unknown, it is generally thought that strong 2D Heisenberg antiferromagnetism combined with disruptive hole doping is an essential aspect of the phenomenon. Intensive studies of other layered 3d transition metal systems have greatly extended our understanding of strongly correlated electron states, but to date have failed to show strong 2D antiferromagnetism or high-Tc superconductivity. For this reason the largely unexplored 4d^9 Ag^II fluorides, which are structurally and perhaps magnetically similar to the 3d^9 Cu^II cuprates, merit close study. Here we present a comprehensive study of magnetism in the layered Ag^II fluoride Cs_2AgF_4, using magnetic susceptometry, neutron diffraction and inelastic neutron scattering techniques. We find that this material is well described as a 2D Heisenberg ferromagnet, in sharp contrast to the high-Tc cuprates. The exchange constant J is the largest known for any material of this type. We suggest that orbital ordering may be the origin of the ferromagnetism we observe in this material.



rate research

Read More

We calculate the expected finite frequency neutron scattering intensity based on the two-sublattice collinear antiferromagnet found by recent neutron scattering experiments as well as by theoretical analysis on the iron oxypnictide LaOFeAs. We consider two types of superexchange couplings between Fe atoms: nearest-neighbor coupling J1 and next-nearest-neighbor coupling J2. We show how to distinguish experimentally between ferromagnetic and antiferromagnetic J1. Whereas magnetic excitations in the cuprates display a so-called resonance peak at (pi,pi) (corresponding to a saddlepoint in the magnetic spectrum) which is at a wavevector that is at least close to nesting Fermi-surface-like structures, no such corresponding excitations exist in the iron pnictides. Rather, we find saddlepoints near (pi,pi/2) and (0,pi/2)(and symmetry related points). Unlike in the cuprates, none of these vectors are close to nesting the Fermi surfaces.
Two-dimensional (2D) Van Hove singularities (VHSs) associated with the saddle points or extrema of the energy dispersion usually show logarithmic divergences in the density of states (DOS). However, recent studies find that the VHSs originating from higher-order saddle-points have faster-than-logarithmic divergences, which can amplify electron correlation effects and create exotic states such as supermetals in 2D materials. Here we report the existence of high-order VHSs in the cuprates and related high-Tc superconductors and show that the anomalous divergences in their spectra are driven by the electronic dimensionality of the system being lower than the dimensionality of the lattice. The order of VHS is found to correlate with the superconducting Tc such that materials with higher order VHSs display higher Tcs. We further show that the presence of the normal and higher-order VHSs in the electronic spectrum can provide a straightforward marker for identifying the propensity of a material toward correlated phases such as excitonic insulators or supermetals. Our study opens up a new materials playground for exploring the interplay between high-order VHSs, superconducting transition temperatures and electron correlation effects in the cuprates and related high-Tc superconductors.
189 - T. Yoshida , W. Malaeb , S. Ideta 2012
Relationship between the superconducting gap and the pseudogap has been the subject of controversies. In order to clarify this issue, we have studied the superconducting gap and pseudogap of the high-Tc superconductor La2-xSrxCuO4 (x=0.10, 0.14) by angle-resolved photoemission spectroscopy (ARPES). Through the analysis of the ARPES spectra above and below Tc, we have identified a superconducting coherence peak even in the anti-nodal region on top of the pseudogap of a larger energy scale. The superconducting peak energy nearly follows the pure d-wave form. The d-wave order parameter Delta_0 [defined by Delta(k)=Delta_0(cos(kxa)-cos(kya)) ] for x=0.10 and 0.14 are nearly the same, Delta_0 ~ 12-14 meV, leading to strong coupling 2Delta_0/kB Tc ~ 10. The present result indicates that the pseudogap and the superconducting gap are distinct phenomena and can be described by the two-gap scenario.
We present the results of a muon-spin relaxation study of the high-Tc analogue material Cs2AgF4. We find unambiguous evidence for magnetic order, intrinsic to the material, below T_C=13.95(3) K. The ratio of inter- to intraplane coupling is estimated to be |J/J|=1.9 x 10^-2, while fits of the temperature dependence of the order parameter reveal a critical exponent beta=0.292(3), implying an intermediate character between pure two- and three- dimensional magnetism in the critical regime. Above T_C we observe a signal characteristic of dipolar interactions due to linear F-mu-F bonds, allowing the muon stopping sites in this compound to be characterized.
Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy waterfall or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the waterfall-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا