No Arabic abstract
A Mn4 single-molecule magnet (SMM), with a well isolated spin ground state of S = 9/2, is used as a model system to study Landau-Zener (LZ) tunneling in the presence of weak intermolecular dipolar and exchange interactions. The anisotropy constants D and B are measured with minor hysteresis loops. A transverse field is used to tune the tunnel splitting over a large range. Using the LZ and inverse LZ method, it is shown that these interactions play an important role in the tunnel rates. Three regions are identified: (i) at small transverse fields, tunneling is dominated by single tunnel transitions; (ii) at intermediate transverse fields, the measured tunnel rates are governed by reshuffling of internal fields, (iii) at larger transverse fields, the magnetization reversal starts to be influenced by the direct relaxation process, and many-body tunnel events may occur. The hole digging method is used to study the next-nearest neighbor interactions. At small external fields, it is shown that magnetic ordering occurs which does not quench tunneling. An applied transverse field can increase the ordering rate. Spin-spin cross-relaxations, mediated by dipolar and weak exchange interactions, are proposed to explain additional quantum steps.
Four discrete MnIII/MnII tetra-nuclear complexes with double-cuboidal core were synthesized. dc magnetic measurements show that both Mn2+ - Mn3+ and Mn3+ - Mn3+ magnetic interactions are ferromagnetic in three samples leading to an S = 9 ground state for the Mn4 unit. Furthermore, these complexes are Single-Molecule Magnets (SMMs) clearly showing both thermally activated and ground state tunneling regimes. Slight changes in the [Mn4] core geometry result in an S = 1 ground state in fourth sample. A one-dimensional assembly of [Mn4] units was obtained in the same synthetic conditions with the subsequent addition of NaN3. Double chair-like N3- bridges connect identical [Mn4] units into a chain arrangement. This material behaves as an Ising assembly of S = 9 tetramers weakly antiferromagnetically coupled. Slow relaxation of the magnetization is observed at low temperature for the first time in an antiferromagnetic chain, following an activated behavior with 47 K and tau_0 = 7x10^-11 s. The observation of this original thermally activated relaxation process is induced by finite-size effects and in particular by the non-compensation of spins in segments of odd-number units. Generalizing the known theories on the dynamic properties of poly-disperse finite segments of antiferromagnetically coupled Ising spins, the theoretical expression of the characteristic energy gaps were estimated and successfully compared to the experimental values.
High-frequency electron paramagnetic resonance (HFEPR) and AC susceptibility measurements are reported for a new high-symmetry Mn12 complex, [Mn12O12(O2CCH3)16(CH3OH)4].CH3OH. The results are compared with those of other high-symmetry spin S = 10 Mn12 single-molecule magnets (SMMs), including the original acetate, [Mn12(O2CCH3)16(H2O)4].2CH3CO2H.4H2O, and the [Mn12O12(O2CCH2Br)16(H2O)4].4CH2Cl2 & [Mn12O12(O2CCH2But)16(CH3OH)4].CH3OH complexes. These comparisons reveal important insights into the factors that influence the values of the effective barrier to magnetization reversal, Ueff, deduced on the basis of AC susceptibility measurements. In particular, we find that variations in Ueff can be correlated with the degree of disorder in a crystal which can be controlled by desolvating (drying) samples. This highlights the importance of careful sample handling when making measurements on SMM crystals containing volatile lattice solvents. The HFEPR data additionally provide important spectroscopic evidence suggesting that the relatively weak disorder induced by desolvation strongly influences the quantum tunneling interactions, and that it is under-barrier tunneling that is responsible for a consistent reduction in Ueff that is found upon drying samples. Meanwhile, the axial anisotropy deduced from HFEPR is found to be virtually identical for all four Mn12 complexes, with essentially no measurable reduction upon desolvation.
We monitor the Landau-Zener dynamics of a single-ion magnet in a spin-transistor geometry. For increasing field-sweep rates, the spin reversal probability shows increasing deviations from that of a closed system. In the low-conductance limit, such deviations are shown to result from a dephasing process. In particular, the observed behaviors are succesfully simulated by means of an adiabatic master equation, with time averaged dephasing (Lindblad) operators. The time average is tentatively interpeted in terms of the finite time resolution of the continuous measurement.
Single-molecule magnets facilitate the study of quantum tunneling of magnetization at the mesoscopic level. The spin-parity effect is among the fundamental predictions that have yet to be clearly observed. It is predicted that quantum tunneling is suppressed at zero transverse field if the total spin of the magnetic system is half-integer (Kramers degeneracy) but is allowed in integer spin systems. The Landau-Zener method is used to measure the tunnel splitting as a function of transverse field. Spin-parity dependent tunneling is established by comparing the transverse field dependence of the tunnel splitting of integer and half-integer spin systems.
A simple mechanical analog describing Landau-Zener tunneling effect is proposed using two weakly coupled chains of nonlinear oscillators with gradually decreasing (first chain) and increasing (second chain) masses. The model allows to investigate nonlinear generalization of Landau-Zener tunneling effect considering soliton propagation and tunneling between the chains. It is shown that soliton tunneling characteristics become drastically dependent on its amplitude in nonlinear regime. The validity of the developed tunneling theory is justified via comparison with direct numerical simulations on oscillator ladder system.