Do you want to publish a course? Click here

Observation of dipole-dipole interaction in a degenerate quantum gas

90   0   0.0 ( 0 )
 Added by J\\\"urgen Stuhler
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the expansion of a Bose-Einstein condensate (BEC) of strongly magnetic chromium atoms. The long-range and anisotropic magnetic dipole-dipole interaction leads to an anisotropic deformation of the expanding Cr-BEC which depends on the orientation of the atomic dipole moments. Our measurements are consistent with the theory of dipolar quantum gases and show that a Cr-BEC is an excellent model system to study dipolar interactions in such gases.



rate research

Read More

We have observed resonant energy transfer between cold Rydberg atoms in spatially separated cylinders. Resonant dipole-dipole coupling excites the 49s atoms in one cylinder to the 49p state while the 41d atoms in the second cylinder are transferred down to the 42p state. We have measured the production of the 49p state as a function of separation of the cylinders (0 - 80 um) and the interaction time (0 - 25 us). In addition we measured the width of the electric field resonances. A full many-body quantum calculation reproduces the main features of the experiments.
The dipole blockade phenomenon is a direct consequence of strong dipole-dipole interaction, where only single atom can be excited because the doubly excited state is shifted out of resonance. The corresponding two-body entanglement with non-zero concurrence induced by the dipole blockade effect is an important resource for quantum information processing. Here, we propose a novel physical mechanism for realizing dipole blockade without the dipole-dipole interaction, where two qubits coupled to a cavity, are driven by a coherent field. By suitably chosen placements of the qubits in the cavity and by adjusting the relative decay strengths of the qubits and cavity field, we kill many unwanted excitation pathways. This leads to dipole blockade. In addition, we show that these two qubits are strongly entangled over a broad regime of the system parameters. We show that a strong signature of this dipole blockade is the bunching property of the cavity photons which thus provides a possible measurement of the dipole blockade. We present dynamical features of the dipole blockade without dipole-dipole interaction. The proposal presented in this work can be realized not only in traditional cavity QED, but also in non-cavity topological photonics involving edge modes.
We point out the possibility of having a roton-type excitation spectrum in a quasi-1D Bose-Einstein condensate with dipole-dipole interactions. Normally such a system is quite unstable due to the attractive portion of the dipolar interaction. However, by reversing the sign of the dipolar interaction using either a rotating magnetic field or a laser with circular polarization, a stable cigar-shaped configuration can be achieved whose spectrum contains a `roton minimum analogous to that found in helium II. Dipolar gases also offer the exciting prospect to tune the depth of this `roton minimum by directly controlling the interparticle interaction strength. When the minimum touches the zero-energy axis the system is once again unstable, possibly to the formation of a density wave.
We have observed Stueckelberg oscillations in the dipole-dipole interaction between Rydberg atoms with an externally applied radio-frequency field. The oscillating RF field brings the interaction between cold Rydberg atoms in two separated volumes into resonance. We observe multi-photon transitions when varying the amplitude of the RF-field and the static electric field offset. The angular momentum states we use show a quadratic Stark shift, which leads to a fundamentally different behavior than linearly shifting states. Both cases are studied theoretically using the Floquet approach and are compared. The amplitude of the sidebands, related to the interaction strength, is given by the Bessel function in the linearly shifting case and by the generalized Bessel function in the quadratically shifting case. The oscillatory behavior of both functions corresponds to Stueckelberg oscillations, an interference effect described by the semi-classical Landau-Zener-Stueckelberg model. The measurements prove coherent dipole-dipole interaction during at least 0.6 micro-seconds.
Dipole-dipole interaction between two two-level `atoms in photonic crystal nanocavity is investigated based on finite-difference time domain algorithm. This method includes both real and virtual photon effects and can be applied for dipoles with different transition frequencies in both weak and strong coupling regimes. Numerical validations have been made for dipoles in vacuum and in an ideal planar microcavity. For dipoles located in photonic crystal nanocavity, it is found that the cooperative decay parameters and the dipole-dipole interaction potential strongly depend on the following four factors: the atomic position, the atomic transition frequency, the resonance frequency, and the cavity quality factor. Properly arranging the positions of the two atoms, we can acquire equal value of the cooperative decay parameters and the local coupling strength. Large cooperative decay parameters can be achieved when transition frequency is equal to the resonance frequency. For transition frequency varying in a domain of the cavity linewidth around the resonance frequency, dipole-dipole interaction potential changes continuously from attractive to repulsive case. Larger value and sharper change of cooperative parameters and dipole-dipole interaction can be obtained for higher quality factor. Our results provide some manipulative approaches for dipole-dipole interaction with potential application in various fields such as quantum computation and quantum information processing based on solid state nanocavity and quantum dot system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا