No Arabic abstract
We carry out an exact analysis of the average frequency $ u_{alpha x_i}^+$ in the direction $x_i$ of positive-slope crossing of a given level $alpha$ such that, $h({bf x},t)-bar{h}=alpha$, of growing surfaces in spatial dimension $d$. Here, $h({bf x},t)$ is the surface height at time $t$, and $bar{h}$ is its mean value. We analyze the problem when the surface growth dynamics is governed by the Kardar-Parisi-Zhang (KPZ) equation without surface tension, in the time regime prior to appearance of cusp singularities (sharp valleys), as well as in the random deposition (RD) model. The total number $N^+$ of such level-crossings with positive slope in all the directions is then shown to scale with time as $t^{d/2}$ for both the KPZ equation and the RD model.
We discuss the exact solution for the properties of the recently introduced ``necklace model for reptation. The solution gives the drift velocity, diffusion constant and renewal time for asymptotically long chains. Its properties are also related to a special case of the Rubinstein-Duke model in one dimension.
In applications spaning from image analysis and speech recognition, to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging. And therefore, few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero-crossings in a fixed time interval of a zero-mean Gaussian stationary processes. In this study we use the so-called Independent Interval Approximation to go beyond Rices result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agrees well with simulations for the non-Markovian autoregressive model.
We extend recent results on the exact hydrodynamics of a system of diffusive active particles displaying a motility-induced phase separation to account for typical fluctuations of the dynamical fields. By calculating correlation functions exactly in the homogeneous phase, we find that two macroscopic length scales develop in the system. The first is related to the diffusive length of the particles and the other to the collective behavior of the particles. The latter diverges as the critical point is approached. Our results show that the critical behavior of the model in one dimension belongs to the universality class of a mean-field Ising model, both for static and dynamic properties, when the thermodynamic limit is taken in a specified manner. The results are compared to the critical behavior exhibited by the ABC model. In particular, we find that in contrast to the ABC model the density large deviation function, at its Gaussian approximation, does not contain algebraically decaying interactions but is of a finite, macroscopic, extent which is dictated by the diverging correlation length.
We present exact derivations of the effective capillary wave fluctuation induced forces resulting from pinning of an interface between two coexisting phases at two points separated by a distance r. In two dimensions the Ising ferromagnet calculations based on the transfer matrix approach give an attractive force decaying as 1/r for large distances. In three dimensions mapping of the body-centered solid-on-solid model onto the 6-vertex model allows for exact solution using the bosonization analysis of the equivalent XXZ Heisenberg quantum chain. The exact result gives the attractive force which decays asymptotically as 1/(rlog r).
The exact nonequilibrium steady state solution of the nonlinear Boltzmann equation for a driven inelastic Maxwell model was obtained by Ben-Naim and Krapivsky [Phys. Rev. E 61, R5 (2000)] in the form of an infinite product for the Fourier transform of the distribution function $f(c)$. In this paper we have inverted the Fourier transform to express $f(c)$ in the form of an infinite series of exponentially decaying terms. The dominant high energy tail is exponential, $f(c)simeq A_0exp(-a|c|)$, where $aequiv 2/sqrt{1-alpha^2}$ and the amplitude $A_0$ is given in terms of a converging sum. This is explicitly shown in the totally inelastic limit ($alphato 0$) and in the quasi-elastic limit ($alphato 1$). In the latter case, the distribution is dominated by a Maxwellian for a very wide range of velocities, but a crossover from a Maxwellian to an exponential high energy tail exists for velocities $|c-c_0|sim 1/sqrt{q}$ around a crossover velocity $c_0simeq ln q^{-1}/sqrt{q}$, where $qequiv (1-alpha)/2ll 1$. In this crossover region the distribution function is extremely small, $ln f(c_0)simeq q^{-1}ln q$.