Do you want to publish a course? Click here

Neutron scattering study of novel magnetic order in Na0.5CoO2

61   0   0.0 ( 0 )
 Added by Goran Gasparovic
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report polarized and unpolarized neutron scattering measurements of the magnetic order in single crystals of Na0.5CoO2. Our data indicate that below T_N=88 K the spins form a novel antiferromagnetic pattern within the CoO2 planes, consisting of alternating rows of ordered and non-ordered Co ions. The domains of magnetic order are closely coupled to the domains of Na ion order, consistent with such a two-fold symmetric spin arrangement. Magnetoresistance and anisotropic susceptibility measurements further support this model for the electronic ground state.



rate research

Read More

Inelastic neutron scattering measurements mapping the in-plane magnetic interactions of Na0.5CoO2 reveal dispersive excitations at points above an energy gap Eg = 11.5(5) meV at the superstructural Bragg reflections. The excitations are highly damped, broadening with increasing energy, and disappear at hw ~ 35 meV, a strong indication that the magnetism is itinerant. Tilting into the ac plane reduces the value of Eg by 25%, suggesting that the dispersion along c is significant and the magnetic correlations are three-dimensional, as seen at the higher doping levels.
We have made extensive reciprocal space maps in the heavy-fermion superconductor URu2Si2 using high-resolution time-of-flight single-crystal neutron diffraction to search for signs of a hidden order parameter related to the 17.5 K phase transition. Within the present sensitivity of the experiment (0.007 uB/U-ion for sharp peaks), no additional features such as incommensurate structures or short-range order have been found in the (h0l) or (hhl) scattering planes. The only additional low-temperature scattering observed was the well-known tiny antiferromagnetic moment of 0.03 uB/U-ion.
373 - J. Bobroff , G. Lang , H. Alloul 2005
Co and Na NMR are used to probe the local susceptibility and charge state of the two Co sites of the Na-ordered orthorhombic Na0.5CoO2. Above T_N=86K, both sites display a similar T-dependence of the spin shift, suggesting that there is no charge segregation into Co3+ and Co4+ sites. Below T_N, the magnetic long range commensurate order found is only slightly affected by the metal-insulator transition (MIT) at T_MIT=51K. Furthermore, the electric field gradient at the Co site does not change at these transitions, indicating the absence of charge ordering. All these observations can be explained by successive SDW induced by two nestings of the Fermi Surface specific to the x=0.5 Na-ordering.
We have investigated the phonon and the magnetic excitations in LaCoO3 by inelastic neutron scattering measurements. The acoustic phonon dispersions show some characteristic features of the folded Brillouin zone (BZ) for the rhombohedrally distorted perovskite structure containing two chemical formula units of LaCoO3 in the unit cell. We observed two transverse optical (TO) phonon branches along (delta, delta, delta), consistent with previously reported Raman active Eg modes which show remarkable softening associated with the spin-state transition [Ishikawa et al., (Phys. Rev. Lett. 93 (2004) 136401.)]. We found that the softening takes place in the TO mode over the whole BZ. In contrast, the acoustic phonons show no anomalous softening associated with the spin-state transition. The low-energy paramagnetic scattering at 8 K is weak, increasing towards a maximum at E > 15 meV, consistent with excitation of the nonmagnetic low-spin to magnetic intermediate-spin state of Co 3+ ions.
257 - J. Robert 2014
The orthorhombic compound NdFe$_2$Al$_{10}$ has been studied by powder and single-crystal neutron diffraction. Below $T_N$ = 3.9 K, the Nd$^{3+}$ magnetic moments order in a double-$k$ [$mathbf{k}_1 = (0, frac{3}{4}, 0)$, $mathbf{k}_2 = (0, frac{1}{4}, 0)$] collinear magnetic structure, whose unit cell consists of four orthorhombic units in the $b$ direction.The refinements show that this structure consists of (0 1 0) ferromagnetic planes stacked along $b$, in which the moments are oriented parallel to $a$ (the easy anisotropy axis according to bulk magnetization measurements) and nearly equal in magnitude ($approx 1.7-1.9 mu_B$). The alternating 8-plane sequence providing the best agreement to the data turns out to be that which yields the lowest exchange energy if one assumes antiferromagnetic near-neighbor exchange interactions with $J_1 gg J_2, J_3$. With increasing temperature, the single-crystal measurements indicate the suppression of the $mathbf{k}_2$ component at $T = 2.7$ K, supporting the idea that the anomalies previously observed around 2--2.5 K result from a squaring transition. In a magnetic field applied along the $a$ axis, the magnetic Bragg satellites disappear at $H_c = 2.45$ T, in agreement with earlier measurements. Comparisons are made with related magnetic orders occurring in Ce$T_2$Al$_{10}$ ($T$: Ru, Os) and TbFe$_2$Al$_{10}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا