Do you want to publish a course? Click here

Scaling of the thermal resistivity of $^4$He in restricted geometries

78   0   0.0 ( 0 )
 Added by Chongshan Zhang
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The thermal resistivity and its scaling function in quasi-2D $^4$He systems are studied by Monte Carlo and spin-dynamics simulation. We use the classical 3D XY model on $Ltimes Ltimes H$ lattices with $Lgg H$, applying open boundary condition along the $H$ direction and periodic boundary conditions along the $L$ directions. A hybrid Monte Carlo algorithm is adopted to efficiently deal with the critical slowing down and to produce initial states for time integration. Fourth-order Suzuki-Trotter decomposition method of exponential operators is used to solve numerically the coupled equations of motion for each spin. The thermal conductivity is calculated by a dynamic current-current correlation function. Our results show the validity of the finite-size scaling theory, and the calculated scaling function agrees well with the available experimental results for slabs using the temperature scale and the thermal resistivity scale as free fitting parameters.



rate research

Read More

Quantum turbulence accompanying thermal counterflow in superfluid $^4$He was recently visualized by the Maryland group, using micron-sized tracer particles of solid hydrogen (J. Phys. Soc. Jpn. {bf 77}, 111007 (2008)) . In order to understand the observations we formulate the coupled dynamics of fine particles and quantized vortices, in the presence of a relative motion of the normal and superfluid components. Numerical simulations based on this formulation are shown to agree reasonably well with experimental observations of the velocity distributions of the tracer particles in thermal counterflow.
We calculate the effect of a heat current on transporting $^3$He dissolved in superfluid $^4$He at ultralow concentration, as will be utilized in a proposed experimental search for the electric dipole moment of the neutron (nEDM). In this experiment, a phonon wind will generated to drive (partly depolarized) $^3$He down a long pipe. In the regime of $^3$He concentrations $tilde < 10^{-9}$ and temperatures $sim 0.5$ K, the phonons comprising the heat current are kept in a flowing local equilibrium by small angle phonon-phonon scattering, while they transfer momentum to the walls via the $^4$He first viscosity. On the other hand, the phonon wind drives the $^3$He out of local equilibrium via phonon-$^3$He scattering. For temperatures below $0.5$ K, both the phonon and $^3$He mean free paths can reach the centimeter scale, and we calculate the effects on the transport coefficients. We derive the relevant transport coefficients, the phonon thermal conductivity and the $^3$He diffusion constants from the Boltzmann equation. We calculate the effect of scattering from the walls of the pipe and show that it may be characterized by the average distance from points inside the pipe to the walls. The temporal evolution of the spatial distribution of the $^3$He atoms is determined by the time dependent $^3$He diffusion equation, which describes the competition between advection by the phonon wind and $^3$He diffusion. As a consequence of the thermal diffusivity being small compared with the $^3$He diffusivity, the scale height of the final $^3$He distribution is much smaller than that of the temperature gradient. We present exact solutions of the time dependent temperature and $^3$He distributions in terms of a complete set of normal modes.
129 - Gordon Baym , D. H. Beck , 2012
Motivated by a proposed experimental search for the electric dipole moment of the neutron (nEDM) utilizing neutron-$^3$He capture in a dilute solution of $^3$He in superfluid $^4 $He, we derive the transport properties of dilute solutions in the regime where the $^3$He are classically distributed and rapid $^3$He-$^3$He scatterings keep the $^3$He in equilibrium. Our microscopic framework takes into account phonon-phonon, phonon-$^3$He, and $^3$He-$^3$He scatterings. We then apply these calculations to measurements by Rosenbaum et al. [J.Low Temp.Phys. {bf 16}, 131 (1974)] and by Lamoreaux et al. [Europhys.Lett. {bf 58}, 718 (2002)] of dilute solutions in the presence of a heat flow. We find satisfactory agreement of theory with the data, serving to confirm our understanding of the microscopics of the helium in the future nEDM experiment.
127 - S. Ikawa , M. Tsubota 2015
We study numerically nonuniform quantum turbulence of coflow in a square channel by the vortex filament model. Coflow means that superfluid velocity $bm{v}_s$ and normal fluid velocity $bm{v}_n$ flow in the same direction. Quantum turbulence for thermal counterflow has been long studied theoretically and experimentally. In recent years, experiments of coflow are performed to observe different features from thermal counterflow. By supposing that $bm{v}_s$ is uniform and $bm{v}_n$ takes the Hagen-Poiseiulle profile, our simulation finds that quantized vortices are distributed inhomogeneously. Vortices like to accumulate on the surface of a cylinder with $bm{v}_s simeq bm{v}_n$. Consequently, the vortex configuration becomes degenerate from three-dimensional to two-dimensional.
The low temperature phase diagram of $^4$He adsorbed on a single graphene sheet is studied by computer simulation of a system comprising nearly thousand helium atoms. In the first layer, two commensurate solid phases are observed, with fillings 1/3 and 7/16 respectively, separated by a domain wall phase, as well as an incommensurate crystal at higher coverage. No evidence of a thermodynamically stable superfliuid phase is found for the first adlayer. Second layer promotion occurs at a coverage of 0.111(4) $AA^{-2}$. In the second layer two phases are observed, namely a superfluid and an incommensurate solid, with no commensurate solid intervening between these two phases. The computed phase diagram closely resembles that predicted for helium on graphite.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا