No Arabic abstract
A dramatic increase in the total thermal conductivity (k) is observed in the Hidden Order (HO) state of single crystal URu2Si2. Through measurements of the thermal Hall conductivity, we explicitly show that the electronic contribution to k is extremely small, so that this large increase in k is dominated by phonon conduction. An itinerant BCS/mean-field model describes this behavior well: the increase in kappa is associated with the opening of a large energy gap at the Fermi Surface, thereby decreasing electron-phonon scattering. Our analysis implies that the Hidden Order parameter is strongly coupled to the lattice, suggestive of a broken symmetry involving charge degrees of freedom.
Since the 1985 discovery of the phase transition at $T_{rm HO}=17.5$ K in the heavy-fermion metal URu$_2$Si$_2$, neither symmetry change in the crystal structure nor magnetic ordering have been observed, which makes this hidden order enigmatic. Some high-field experiments have suggested electronic nematicity which breaks fourfold rotational symmetry, but direct evidence has been lacking for its ground state at zero magnetic field. Here we report on the observation of lattice symmetry breaking from the fourfold tetragonal to twofold orthorhombic structure by high-resolution synchrotron X-ray diffraction measurements at zero field, which pins down the space symmetry of the order. Small orthorhombic symmetry-breaking distortion sets in at $T_{rm HO}$ with a jump, uncovering the weakly first-order nature of the hidden-order transition. This distortion is observed only in ultrapure sample, implying a highly unusual coupling nature between the electronic nematicity and underlying lattice.
We have performed ultrasonic measurements on single-crystalline URu2Si2 with pulsed magnetic fields, in order to check for possible lattice instabilities due to the hybridized state and the hidden-order state of this compound. The elastic constant (C11-C12)/2, which is associated with a response to the {Gamma}3-type symmetry-breaking (orthorhombic) strain field, shows a three-step increase at H > 35 T for H || c at low temperatures, where successive meta-magnetic transitions are observed in the magnetization. We discovered a new fact that the absolute change of the softening of (C11-C12)/2 in the temperature dependence is quantitatively recovered at the suppression of hybridized-electronic state and the hidden order in high-magnetic field for H perp c associated with the successive transitions. The present results suggest that the {Gamma}3-type lattice instability, is related to both the emergence of the hybridized electronic state and the hidden-order parameter of URu2Si2. On the other hand, magnetic fields H || [100] and [110] enhance the softening of (C11-C12)/2 in the hidden order phase, while no step-like anomaly is observed up to 68.7 T. We discuss the limitation of the localized-electron picture for describing these features of URu2Si2 by examination of a crystalline electric field model in terms of mean-field theory.
Heavy electronic states originating from the f atomic orbitals underlie a rich variety of quantum phases of matter. We use atomic scale imaging and spectroscopy with the scanning tunneling microscope (STM) to examine the novel electronic states that emerge from the uranium f states in URu2Si2. We find that as the temperature is lowered, partial screening of the f electrons spins gives rise to a spatially modulated Kondo-Fano resonance that is maximal between the surface U atoms. At T=17.5 K, URu2Si2 is known to undergo a 2nd order phase transition from the Kondo lattice state into a phase with a hidden order parameter. From tunneling spectroscopy, we identify a spatially modulated, bias-asymmetric energy gap with a mean-field temperature dependence that develops in the hidden order state. Spectroscopic imaging further reveals a spatial correlation between the hidden order gap and the Kondo resonance, suggesting that the two phenomena involve the same electronic states.
We study, using high-resolution angle-resolved photoemission spectroscopy, the evolution of the electronic structure in URu2Si2 at the Gamma, Z and X high-symmetry points from the high-temperature Kondo-screened regime to the low-temperature `hidden-order (HO) state. At all temperatures and symmetry points, we find structures resulting from the interaction between heavy and light bands, related to the Kondo lattice formation. At the X point, we directly measure a hybridization gap of 11 meV already open at temperatures above the ordered phase. Strikingly, we find that while the HO induces pronounced changes at Gamma and Z, the hybridization gap at X does not change, indicating that the hidden-order parameter is anisotropic. Furthermore, at the Gamma and Z points, we observe the opening of a gap in momentum in the HO state, and show that the associated electronic structure results from the hybridization of a light electron band with the Kondo-lattice bands characterizing the paramagnetic state.
Solids with strong electron correlations generally develop exotic phases of electron matter at low temperatures. Among such systems, the heavy-fermion semi-metal URu2Si2 presents an enigmatic transition at To = 17.5 K to a `hidden order state whose order parameter remains unknown after 23 years of intense research. Various experiments point to the reconstruction and partial gapping of the Fermi surface when the hidden-order establishes. However, up to now, the question of how this transition affects the electronic spectrum at the Fermi surface has not been directly addressed by a spectroscopic probe. Here we show, using angle-resolved photoemission spectroscopy, that a band of heavy quasi-particles drops below the Fermi level upon the transition to the hidden-order state. Our data provide the first direct evidence of a large reorganization of the electronic structure across the Fermi surface of URu2Si2 occurring during this transition, and unveil a new kind of Fermi-surface instability in correlated electron systems