Do you want to publish a course? Click here

Kondo Resonance Decoherence by an External Potential

92   0   0.0 ( 0 )
 Added by Rosa Monreal
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Kondo problem, for a quantum dot (QD), subjected to an external bias, is analyzed in the limit of infinite Coulomb repulsion by using a consistent equations of motion method based on a slave-boson Hamiltonian. Utilizing a strict perturbative solution in the leads-dot coupling, T, to T^4 and T^6 orders, we calculate the QD spectral density and conductance, as well as the decoherent rate that drive the systemm from the strong to the weak coupling regime. Our results indicate thet the weak coupling regime is reached for voltages larger than a few units of the Kondo temperature.



rate research

Read More

Kondo correlations are responsible for the emergence of a zero-bias peak in the low temperature differential conductance of Coulomb blockaded quantum dots. In the presence of a global SU(2)$otimes$SU(2) symmetry, which can be realized in carbon nanotubes, they also inhibit inelastic transitions which preserve the Kramers pseudospins associated to the symmetry. We report on magnetotransport experiments on a Kondo correlated carbon nanotube where resonant features at the bias corresponding to the pseudospin-preserving transitions are observed. We attribute this effect to a simultaneous enhancement of pseudospin-non-preserving transitions occurring at that bias. This process is boosted by asymmetric tunneling couplings of the two Kramers doublets to the leads and by asymmetries in the potential drops at the leads. Hence, the present work discloses a fundamental microscopic mechanisms ruling transport in Kondo systems far from equilibrium.
Proximity of two different materials leads to an intricate coupling of quasiparticles so that an unprecedented electronic state is often realized at the interface. Here, we demonstrate a resonance-type many-body ground state in graphene, a non-magnetic two-dimensional Dirac semimetal, when grown on SmB6, a Kondo insulator, via thermal decomposition of fullerene molecules. This ground state is typically observed in three-dimensional magnetic materials with correlated electrons. Above the characteristic Kondo temperature of the substrate, the electron band structure of pristine graphene remains almost intact. As temperature decreases, however, the Dirac fermions of graphene become hybridized with the Sm 4f states. Remarkable enhancement of the hybridization and Kondo resonance is observed with further cooling and increasing charge carrier density of graphene, evidencing the Kondo screening of the Sm 4f local magnetic moment by the conduction electrons of graphene at the interface. These findings manifest the realization of the Kondo effect in graphene by the proximity of SmB6 that is tuned by temperature and charge carrier density of graphene.
We exploit the decoherence of electrons due to magnetic impurities, studied via weak localization, to resolve a longstanding question concerning the classic Kondo systems of Fe impurities in the noble metals gold and silver: which Kondo-type model yields a realistic description of the relevant multiple bands, spin and orbital degrees of freedom? Previous studies suggest a fully screened spin $S$ Kondo model, but the value of $S$ remained ambiguous. We perform density functional theory calculations that suggest $S = 3/2$. We also compare previous and new measurements of both the resistivity and decoherence rate in quasi 1-dimensional wires to numerical renormalization group predictions for $S=1/2,1$ and 3/2, finding excellent agreement for $S=3/2$.
We use a low-temperature scanning tunneling microscope to study the interplay between the Kondo effect of a single-atom contact and a spin current. To this end, a nickel tip is coated by a thick layer of copper and brought into contact with a single Co atom adsorbed on a Cu(100) surface. We show that upon contact the Kondo resonance of Co is spin split and attribute the splitting to the spin current produced by the nickel tip and flowing across the copper spacer. A quantitative line shape analysis indicates that the spin polarization of the junction amounts up to 18%, but decreases when a pristine nickel tip is directly contacted to the Co atom.
We apply our recently developed, selfconsistent renormalization group (RG) method to STM spectra of a two-impurity Kondo system consisting of two cobalt atoms connected by a one-dimensional Cu chain on a Cu surface. This RG method was developed to describe local spin screening in multi-impurity Kondo systems in presence of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Using the RKKY interaction of a one-dimensional chain, we explain the experimentally observed suppression and oscillation of the Kondo temperature, $T_K(y)$, as a function of the length of the chain and the corresponding RKKY interaction parameter $y$, regardless of the RKKY coupling being ferromagnetic or antiferromagnetic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا