Negative differential conductance in quantum dots in theory and experiment


Abstract in English

Experimental results for sequential transport through a lateral quantum dot in the regime of spin blockade induced by spin dependent tunneling are compared with theoretical results obtained by solving a master equation for independent electrons. Orbital and spin effects in electron tunneling in the presence of a perpendicular magnetic field are identified and discussed in terms of the Fock-Darwin spectrum with spin. In the nonlinear regime, a regular pattern of negative differential conductances is observed. Electrical asymmetries in tunnel rates and capacitances must be introduced in order to account for the experimental findings. Fast relaxation of the excited states in the quantum dot have to be assumed, in order to explain the absence of certain structures in the transport spectra.

Download