Do you want to publish a course? Click here

Differential thermal analysis and solution growth of intermetallic compounds

119   0   0.0 ( 0 )
 Added by Yuri Janssen
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

To obtain single crystals by solution growth, an exposed primary solidification surface in the appropriate, but often unknown, equilibrium alloy phase diagram is required. Furthermore, an appropriate crucible material is needed, necessary to hold the molten alloy during growth, without being attacked by it. Recently, we have used the comparison of realistic simulations with experimental differential thermal analysis (DTA) curves to address both these problems. We have found: 1) complex DTA curves can be interpreted to determine an appropriate heat treatment and starting composition for solution growth, without having to determine the underlying phase diagrams in detail. 2) DTA can facilitate identification of appropriate crucible materials. DTA can thus be used to make the procedure to obtain single crystals of a desired phase by solution growth more efficient. We will use some of the systems for which we have recently obtained single-crystalline samples using the combination of DTA and solution growth as examples. These systems are TbAl, Pr$_7$Ni$_2$Si$_5$, and YMn$_4$Al$_8$.



rate research

Read More

We present a tutorial on the principles of crystal growth of intermetallic and oxide compounds from molten solutions, with an emphasis on the fundamental principles governing the underlying phase equilibria and phase diagrams of multicomponent systems.
The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur-hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component $ab,initio$ structural search in the immiscible Fe--Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above $approx36$ GPa, FeBi$_2$ and FeBi$_3$. According to our predictions, FeBi$_2$ is a metal at the border of magnetism with a conventional electron-phonon mediated superconducting transition temperature of $T_{rm c}=1.3$ K at 40 GPa. In analogy to other iron-based materials, FeBi$_2$ is possibly a non-conventional superconductor with a real $T_{rm c}$ significantly exceeding the values obtained within Bardeen-Cooper-Schrieffer (BCS) theory.
Intermetallic compounds possess unique atomic arrangements that often lead to exceptional material properties, but their extreme brittleness usually causes fracture at a limited strain of less than 1% and prevents their practical use. Therefore, it is critical for them to exhibit either plasticity or some form of structural transition to absorb and release a sufficient amount of mechanical energy before failure occurs. This study reports that the ThCr2Si2-structured intermetallic compound (CaFe2As2) and a hybrid of its structure (CaKFe4As4) with 2 {mu}m in diameter and 6 {mu}m in height can exhibit superelasticity with strain up to 17% through a reversible, deformation-induced, lattice collapse, leading to a modulus of resilience orders of magnitude higher than that of most engineering materials. Such superelasticity also can enable strain engineering, which refers to the modification of material properties through elastic strain. Density Functional Theory calculations and cryogenic nanomechanical tests predict that superconductivity in CaKFe4As4 could be turned on/off through the superelasticity process, before fracture occurs, even under uniaxial compression, which is the favorable switching loading mode in most engineering applications. Our results suggest that other members with the same crystal structure (more than 2500 intermetallic compounds), and substitution series based on them should be examined for the possibility of manifesting similar superelastic and strain-engineerable functional properties.
124 - M. ElMassalami 2011
The low-temperature normal-state specific heat and resistivity curves of various nonmagnetic intermetallic compounds manifest an anomalous thermal evolution. Such an anomaly is exhibited as a break in the slope of the linearized C/T versus T^2 curve and as a drop in the R versus T curve, both at the same T_{beta}{gamma}. It is related, not to a thermodynamic phase transition, but to an anomaly in the density of states curves of the phonon or electron subsystems. On representing these two anomalies as additional Dirac-type delta functions, situated respectively at kB.{theta}_L (for lattice) and kB.{theta}_E (for electrons), an analytical expression for the total specific heat can be obtained. A least-square fit of this expression to experimental specific heat curves of various compounds reproduced satisfactorily all the features of the anomalous thermal evolution. The obtained fit parameters (in particular the Sommerfeld constant, {gamma}_{0}, and Debye temperatures, {theta}_D, compare favorably with the reported values. Furthermore, the analysis shows that (i) (T_{beta}{gamma}) / ({theta}_D) = 0.2(1pm1/surd6) and (ii) {gamma}_{0} {propto} ({theta}_D)^2; both relations are in a reasonable agreement with the experimental results. Finally, this analysis (based on the above arguments) justifies the often-used procedure that treats the above anomaly in terms of either a thermal variation of {theta}_D or an additional Einstein mode.
354 - V. Hardy , S. Majumdar , S. Crowe 2003
Field-induced magnetization jumps with similar characteristics are observed at low temperature for the intermetallic germanide Gd5Ge4and the mixed-valent manganite Pr0.6Ca0.4Mn0.96Ga0.04O3. We report that the field location -and even the existence- of these jumps depends critically on the magnetic field sweep rate used to record the data. It is proposed that, for both compounds, the martensitic character of their antiferromagnetic-to-ferromagnetic transitions is at the origin of the magnetization steps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا