Do you want to publish a course? Click here

Interference of Bose-Einstein Condensates on an Atom Chip

137   0   0.0 ( 0 )
 Added by Yong-il Shin
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have used a microfabricated atom chip to split a single Bose-Einstein condensate of sodium atoms into two spatially separated condensates. Dynamical splitting was achieved by deforming the trap along the tightly confining direction into a purely magnetic double-well potential. We observed the matter wave interference pattern formed upon releasing the condensates from the microtraps. The intrinsic features of the quartic potential at the merge point, such as zero trap frequency and extremely high field-sensitivity, caused random variations of the relative phase between the two split condensates. Moreover, the perturbation from the abrupt change of the trapping potential during the splitting was observed to induce vortices.



rate research

Read More

The recombination of two split Bose-Einstein condensates on an atom chip is shown to result in heating which depends on the relative phase of the two condensates. This heating reduces the number of condensate atoms between 10 and 40% and provides a robust way to read out the phase of an atom interferometer without the need for ballistic expansion. The heating may be caused by the dissipation of dark solitons created during the merging of the condensates.
We present a permanent magnetic film atom chip based on perpendicularly magnetized TbGdFeCo films. This chip routinely produces a Bose-Einstein condensate (BEC) of 10^5 87Rb atoms using the magnetic film potential. Fragmentation observed near the film surface provides unique opportunities to study BEC in a disordered potential. We show this potential can be used to simultaneously produce multiple spatially separated condensates. We exploit part of this potential to realize a time-dependent double well system for splitting a condensate.
101 - G.-B. Jo , Y. Shin , S. Will 2006
We measured the relative phase of two Bose-Einstein condensates confined in an radio frequency induced double well potential on an atom chip. We observed phase coherence between the separated condensates for times up to 200 ms after splitting, a factor of 10 beyond the phase diffusion limit expected for a coherent state in our experimental conditions (20 ms). The enhanced coherence time is attributed to number squeezing of the initial state by a factor of 10. In addition, we demonstrated a rotationally sensitive (Sagnac) geometry for a guided atom interferometer by propagating the split condensates.
93 - R. Corgier , S. Amri , W. Herr 2017
We present a detailed theoretical analysis of the implementation of shortcut-to-adiabaticity protocols for the fast transport of neutral atoms with atom chips. The objective is to engineer transport ramps with durations not exceeding a few hundred milliseconds to provide metrologically-relevant input states for an atomic sensor. Aided by numerical simulations of the classical and quantum dynamics, we study the behavior of a Bose-Einstein condensate in an atom chip setup with realistic anharmonic trapping. We detail the implementation of fast and controlled transports over large distances of several millimeters, i.e. distances 1000 times larger than the size of the atomic cloud. A subsequent optimized release and collimation step demonstrates the capability of our transport method to generate ensembles of quantum gases with expansion speeds in the picokelvin regime. The performance of this procedure is analyzed in terms of collective excitations reflected in residual center of mass and size oscillations of the condensate. We further evaluate the robustness of the protocol against experimental imperfections.
167 - Bo Yan , Feng Cheng , Min Ke 2008
We report an experiment of creating Bose-Einstein condensate (BEC) on an atom chip. The chip based Z-wire current and a homogeneous bias magnetic field create a tight magnetic trap, which allows for a fast production of BEC. After an 4.17s forced radio frequency evaporative cooling, a condensate with about 3000 atoms appears. And the transition temperature is about 300nK. This compact system is quite robust, allowing for versatile extensions and further studying of BEC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا