Selection and jump rules in electronic Raman scattering from GaAs/Al_{x}Ga_{1-x}As artificial atoms


Abstract in English

A theoretical description of electronic Raman scattering from GaAs/Al_{x}Ga_{1-x}As artificial atoms under the influence of an external magnetic field is presented. Raman spectra with laser excitation energy in the interval E_{gap}-30 meV to E_{gap} are computed in the polarized and depolarized geometry. The polarization ratios for the collective and single-particle excitations indicate a breakdown of the Raman polarization selection rules once the magnetic field is switched on. A Raman intensity jump rule at the band gap is predicted in our calculations. This rule can be a useful tool for identifying the physical nature (charge or spin) of the electronic excitations in quantum dots in low magnetic fields.

Download