Do you want to publish a course? Click here

Selection and jump rules in electronic Raman scattering from GaAs/Al_{x}Ga_{1-x}As artificial atoms

49   0   0.0 ( 0 )
 Added by Augusto Gonzalez
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

A theoretical description of electronic Raman scattering from GaAs/Al_{x}Ga_{1-x}As artificial atoms under the influence of an external magnetic field is presented. Raman spectra with laser excitation energy in the interval E_{gap}-30 meV to E_{gap} are computed in the polarized and depolarized geometry. The polarization ratios for the collective and single-particle excitations indicate a breakdown of the Raman polarization selection rules once the magnetic field is switched on. A Raman intensity jump rule at the band gap is predicted in our calculations. This rule can be a useful tool for identifying the physical nature (charge or spin) of the electronic excitations in quantum dots in low magnetic fields.



rate research

Read More

We have undertaken a study of diluted magnetic semiconductors $Ga_{1-x}Mn_{x}N$ and $Ga_{1-x}Cr_{x}N$ with $x=0.0625, 0.125$, using the all electron linearized augmented plane wave method (LAPW) for different configurations of Mn as well as Cr. We study four possible configurations of the impurity in the wurtzite GaN structure to predict energetically most favorable structure within the 32 atom supercell and conclude that the near-neighbor configuration has the lowest energy. We have also analyzed the ferro-magnetic as well as anti-ferromagnetic configurations of the impurity atoms. The density of states as well as bandstructure indicate half metallic state for all the systems. $T_c$ has also been estimated for the above systems.
121 - S.-F. Wu , P. Richard , H. Ding 2016
Using polarization-resolved electronic Raman scattering we study under-doped, optimally-doped and over-doped Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ samples in the normal and superconducting states. We show that low-energy nematic fluctuations are universal for all studied doping range. In the superconducting state, we observe two distinct superconducting pair breaking peaks corresponding to one large and one small superconducting gaps. In addition, we detect a collective mode below the superconducting transition in the B$_{2g}$ channel and determine the evolution of its binding energy with doping. Possible scenarios are proposed to explain the origin of the in-gap collective mode. In the superconducting state of the under-doped regime, we detect a re-entrance transition below which the spectral background changes and the collective mode vanishes.
A nuclear magnetic resonance (NMR) study is reported of multiple (30) Al$_{0.13}$Ga$_{0.87}$As quantum well (QW) sample near the Landau level filling factor $ u =1$. In these Al$_{0.13}$Ga$_{0.87}$As QWs the effective $g$ factor is nearly zero. This can lead to two effects: vanishing electronic polarization $(P)$ and skyrmionic excitations composed of a huge number of spins. As small $P$ values cause an overlap of the NMR signals from the QW and barriers, a special technique was employed to allow these two signals to be distinguished. The QW signal corresponds to a small, negative, and very broad distribution of spin polarization that exhibits thermally induced depolarization. Such a distribution can be attributed to sample inhomogeneities and/or to large skyrmions, the latter possibility being favored by observation of a very fast $T_{2}^{-1}$ rate.
362 - G. D. Cole , P.-L. Yu , C. Gartner 2014
We investigate the optomechanical properties of tensile-strained ternary InGaP nanomembranes grown on GaAs. This material system combines the benefits of highly strained membranes based on stoichiometric silicon nitride, with the unique properties of thin-film semiconductor single crystals, as previously demonstrated with suspended GaAs. Here we employ lattice mismatch in epitaxial growth to impart an intrinsic tensile strain to a monocrystalline thin film (approximately 30 nm thick). These structures exhibit mechanical quality factors of 2*10^6 or beyond at room temperature and 17 K for eigenfrequencies up to 1 MHz, yielding Q*f products of 2*10^12 Hz for a tensile stress of ~170 MPa. Incorporating such membranes in a high finesse Fabry-Perot cavity, we extract an upper limit to the total optical loss (including both absorption and scatter) of 40 ppm at 1064 nm and room temperature. Further reductions of the In content of this alloy will enable tensile stress levels of 1 GPa, with the potential for a significant increase in the Q*f product, assuming no deterioration in the mechanical loss at this composition and strain level. This materials system is a promising candidate for the integration of strained semiconductor membrane structures with low-loss semiconductor mirrors and for realizing stacks of membranes for enhanced optomechanical coupling.
Polarization dependent Raman scattering experiments realized on single GaAs nanowires with different percentages of zinc-blende and wurtzite structure are presented. The selection rules for the special case of nanowires are found and discussed. In the case of zinc-blende, the transversal optical mode E1(TO) at 267 cm-1 exhibits the highest intensity when the incident and analyzed polarization are parallel to the nanowire axis. This is a consequence of the nanowire geometry and dielectric mismatch with the environment, and in quite good agreement with the Raman selection rules. We also find a consistent splitting of 1 cm-1 of the E1(TO). The transversal optical mode related to the wurtzite structure, E2H, is measured between 254 and 256 cm-1, depending on the wurtzite content. The azymutal dependence of E2H indicates that the mode is excited with the highest efficiency when the incident and analyzed polarization are perpendicular to the nanowire axis, in agreement with the selection rules. The presence of strain between wurtzite and zinc-blende is analyzed by the relative shift of the E1(TO) and E2H modes. Finally, the influence of the surface roughness in the intensity of the longitudinal optical mode on {110} facets is presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا