We propose and show that the c-axis transport in high-temperature superconductors is controlled by the pseudogap energy and the c-axis resistivity satisfies a universal scaling law in the pseudogap phase. We derived approximately a scaling function for the c-axis resistivity and found that it fits well with the experimental data of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10+delta}$, and YBa$_2$Cu$_3$O$_{7-delta}$. Our works reveals the physical origin of the semiconductor-like behavior of the c-axis resistivity and suggests that the c-axis hopping is predominantly coherent.