No Arabic abstract
We have mapped the neutron scattering spin spectrum at low-energies in YBa2Cu3O6.353 (Tc=18 K) where the doping ~0.06 is near the critical value (pc=0.055) for superconductivity. No coexistence with long range ordered antiferromagnetism is found. The spins fluctuate on two energy scales, one a damped spin response with a ~2 meV relaxation rate and the other a central mode with a relaxation rate that slows to less than 0.08 meV below Tc. The spectrum mirrors that of a soft mode driving a central mode. Extremely short correlation lengths, 42+-5 Angstrom in-plane and 8+-2 Angstrom along the c direction, and isotropic spin orientations for the central mode indicate that the correlations are subcritical with respect to any second order transition to Neel order. The dynamics follows a model where damped spin fluctuations are coupled to the slow fluctuations of regions with correlations shortened by the hole doping.
Neutron scattering from high-quality YBa2Cu3O6.33 (YBCO6.33) single crystals with a Tc of 8.4 K shows no evidence of a coexistence of superconductivity with long-range antiferromagnetic order at this very low, near-critical doping of p~0.055. However, we find short-range three dimensional spin correlations that develop at temperatures much higher than Tc. Their intensity increases smoothly on cooling and shows no anomaly that might signify a Neel transition. The system remains subcritical with spins correlated over only one and a half unit cells normal to the planes. At low energies the short-range spin response is static on the microvolt scale. The excitations out of this ground state give rise to an overdamped spectrum with a relaxation rate of 3 meV. The transition to the superconducting state below Tc has no effect on the spin correlations. The elastic interplanar spin response extends over a length that grows weakly but fails to diverge as doping is moved towards the superconducting critical point. Any antiferromagnetic critical point likely lies outside the superconducting dome. The observations suggest that conversion from Neel long-range order to a spin glass texture is a prerequisite to formation of paired superconducting charges. We show that while pc =0.052 is a critical doping for superconducting pairing, it is not for spin order.
We present the influences of electronic and magnetic correlations and doping evolution on the groundstate properties of recently discovered superconductor Ba$_{2}$CuO$_{4-delta}$ by utilizing the Kotliar-Ruckenstein slave boson method. Starting with an effective two-orbital Hubbard model (Scalapino {it et al.} Phys. Rev. {bf B 99}, 224515 (2019)), we demonstrate that with increasing doping concentration, the paramagnetic (PM) system evolves from two-band character to single-band ones around the electron filling n=2.5, with the band nature of the $d_{3z^{2}-r^{2}}$ and $d_{x^{2}-y^{2}}$ orbitals to the $d_{x^{2}-y^{2}}$ orbital, slightly affected when the electronic correlation U varies from 2 to 4 eV. Considering the magnetic correlations, the system displays one antiferromagnetically metallic (AFM) phase in $2<n<2.16$ and a PM phase in $n>2.16$ at U=2 eV, or two AFM phases in $2<n<2.57$ and $2.76<n<3$, and a PM phase in $2.57<n<2.76$ respectively, at U=4 eV. Our results show that near realistic superconducting state around n=2.6 the intermediate correlated Ba$_{2}$CuO$_{3,2}$ should be single band character, and the s-wave superconducting pairing strength becomes significant when U$>$2 eV, and crosses over to d-wave when U$>$2.2 eV.
The control of non-equilibrium phenomena in complex solids is an important research frontier, encompassing new effects like light induced superconductivity. Here, we show that coherent optical excitation of molecular vibrations in the organic conductor K3C60 can induce a non-equilibrium state with the optical properties of a superconductor. A transient gap in the real part of the optical conductivity and a low-frequency divergence of the imaginary part are measured for base temperatures far above equilibrium Tc=20 K. These findings underscore the role of coherent light fields in inducing emergent order.
We demonstrate that the anisotropy R of the paramagnetic spin fluctuations grows toward Tc at 75As sites in the optimally electron-doped superconductor Ba[(Fe0.92Co0.08)2]2As2, with stronger spin fluctuations along the c-axis. Our finding is in remarkable contrast with the case of high T$_c$ cuprates, where R is independent of temperature above Tc.
The quantum spin fluctuations of the S = 1/2 Cu ions are important in determining the physical properties of the high-transition temperature (high-Tc) copper oxide superconductors, but their possible role in the electron pairing for superconductivity remains an open question. The principal feature of the spin fluctuations in optimally doped high-Tc superconductors is a well defined magnetic resonance whose energy (Er) tracks Tc (as the composition is varied) and whose intensity develops like an order parameter in the superconducting state. We show that the suppression of superconductivity and its associated condensation energy by a magnetic field in the electron-doped high-Tc superconductor, Pr0.88LaCe0.12CuO4-d (Tc = 24 K), is accompanied by the complete suppression of the resonance and the concomitant emergence of static antiferromagnetic (AF) order. Our results demonstrate that the resonance is intimately related to the superconducting condensation energy, and thus suggest that it plays a role in the electron pairing and superconductivity.