No Arabic abstract
Bi2Sr2-xLaxCuO6+d and Bi2-yPbySr2-xLaxCuO6+d high-Tc superconductors in a wide doping range from overdoped to heavily underdoped were studied by X-ray absorption and photo-emission spectroscopy. The hole concentration p was determined by an analysis of the Cu L3-absorption edge. Besides the occupied density of states derived from photoemission, the un-occupied density of states was determined from the prepeak of the O K-absorption edge. Both, the occupied as well as the unoccupied density of states reveal the same dependence on hole doping, i.e. a continuous increase with increasing doping in the hole underdoped region and a constant density in the hole overdoped region. By comparing these results of single-layer BSLCO with previous results on single-layer LSCO it could be argued that besides the localized holes on Cu sites the CuO2-planes consist of two types of doped holes, from which the so-called mobile holes determine the intensity of the prepeak of the O 1s absorption edge.
We have studied the evolution of the structural modulation in epitaxial, c-axis oriented, Bi2Sr2-xLaxCuO6+d thin films when varying the La content x and for a given x as a function of oxygen content. A series of thin films with 0<x<0.8 have been prepared in-situ by rf magnetron sputtering and characterized by R(T) measurements and RBS, TEM and X-Ray diffraction techniques. The oxygen content of each individual film was varied by thermal annealing across the phase diagram. The evolution of the structural modulation has been thoroughly studied by X-Ray diffraction in determining the variation of the amplitude of satellite reflections in special 2 axes 2theta /theta-theta scans (reciprocal space scans). It is shown that the amplitude of the modulation along the c-axis decreases strongly when x increases from 0 to 0.2. It is demonstrated that this variation is essentially governed by La content x and that changing the oxygen content by thermal treatments has a much lower influence, even becoming negligible for x>0.2. Such study is important to understand the electronical properties of Bi2Sr2-xLaxCuO6+d thin films.
We report Raman measurements on Bi2Sr2CaCu2O8+d single crystals which allow us to quantitavely evaluate the doping dependence of the density of Cooper pairs in the superconducting state. We show that the drastic loss of Cooper pairs in the antinodal region as the doping level is reduced, is concomitant with a deep alteration of the quasiparticles dynamic above Tc and consistent with a pseudogap which competes with superconductivity. Our data also reveal that the overall density of Cooper pairs evolves with doping, distinctly from the superfluid density above the doping level pc=0.2.
We report the results of the Knight shift by 63,65Cu-nuclear-magnetic resonance (NMR) measurements on single-layered copper-oxide Bi2Sr2-xLaxCuO6+delta conducted under very high magnetic fields up to 44 T. The magnetic field suppresses superconductivity completely and the pseudogap ground state is revealed. The 63Cu-NMR Knight shift shows that there remains a finite density of states (DOS) at the Fermi level in the zero-temperature limit, which indicates that the pseudogap ground state is a metallic state with a finite volume of Fermi surface. The residual DOS in the pseudogap ground state decreases with decreasing doping (increasing x) but remains quite large even at the vicinity of the magnetically ordered phase of x > 0.8, which suggests that the DOS plunges to zero upon approaching the Mott insulating phase.
We study the low-energy density of states of Dirac fermions in disordered d-wave superconductor. At zero energy, a finite density of states is obtained via the mechanism of dynamical mass generation in an effective (1+1)-dimensional relativistic field theory.
Induction of holes not only in the superconductive CuO2 plane but also in the Bi2O2+d charge reservoir of the Bi2Sr2(Y1-xCax)Cu2O8+d superconductor upon CaII-for-YIII substitution is evidenced by means of two independent techniques, i.e., high-resolution x-ray-absorption near-edge structure (XANES) spectroscopy measurements and coulometric redox titrations. The absolute values derived for the CuO2-plane hole concentration from the Cu L2,3-edge XANES spectra are in good agreement with those obtained from the coulometric redox analysis. The CuO2-plane hole concentration is found to increase from 0.03 to 0.14 concomitantly with the increase in the BiO1+d/2-layer hole concentration from 0.00 to 0.13 as the Ca-substitution level, x, increases from 0 to 1. The threshold CuO2-plane hole concentration for the appearance of superconductivity is determined at 0.06, while the highest Tc is obtained at the hole concentration of 0.12. In the O K-edge XANES spectrum, the increases in the CuO2-plane and BiO1+d/2-layer hole concentrations with increasing x are seen as enhancement in the relative intensities of the pre-edge peaks at ~528.3 and ~530.5 eV, respectively.