No Arabic abstract
The entanglement transfer from electrons localized in a pair of quantum dots to circularly polarized photons is governed by optical selection rules, enforced by conservation of angular momentum. We point out that the transfer can not be achieved by means of unitary evolution unless the angular momentum of the two initial qubit states differs by 2 units. In particular, for spin-entangled electrons the difference in angular momentum is 1 unit -- so the transfer fails. Nevertheless, the transfer can be successfully completed if the unitary evolution is followed by a measurement of the angular momentum of each quantum dot and post-processing of the photons using the measured values as input.
We derive some of the axioms of the algebraic theory of anyon [A. Kitaev, Ann. Phys., 321, 2 (2006)] from a conjectured form of entanglement area law for two-dimensional gapped systems. We derive the fusion rules of topological charges and show that the multiplicities of the fusion rules satisfy these axioms. Moreover, even though we make no assumption about the exact value of the constant sub-leading term of the entanglement entropy of a disk-like region, this term is shown to be equal to $ln mathcal{D}$, where $mathcal{D}$ is the total quantum dimension of the underlying anyon theory. These derivations are rigorous and follow from the entanglement area law alone. More precisely, our framework starts from two local entropic constraints, which are implied by the area law. From these constraints, we prove what we refer to as the isomorphism theorem. The existence of superselection sectors and fusion multiplicities follows from this theorem, even without assuming anything about the parent Hamiltonian. These objects and the axioms of the anyon theory are shown to emerge from the structure and the internal self-consistency relations of the information convex sets.
We present an analytical tight-binding theory of the optical properties of graphene nanoribbons with zigzag edges. Applying the transfer matrix technique to the nearest-neighbor tight-binding Hamiltonian, we derive analytical expressions for electron wave functions and optical transition matrix elements for incident light polarized along the structure axis. It follows from the obtained results that optical selection rules result from the wave function parity factor $(-1)^J$, where $J$ is the band number. These selection rules are that $Delta J$ is odd for transitions between valence and conduction subbands and that $Delta J$ is even for transitions between only valence (conduction) subbands. Although these selection rules are different from those in armchair carbon nanotubes, there is a hidden correlation between absorption spectra of the two structures that should allow one to use them interchangeably in some applications. The correlation originates from the fact that van Hove singularities in the tubes are centered between those in the ribbons if the ribbon width is about a half of the tube circumference. The analysis of the matrix elements dependence on the electron wave vector for narrow ribbons shows a smooth non-singular behavior at the Dirac points and the points where the bulk states meet the edge states.
We theoretically investigate the efficiency of an entanglement swapping procedure based on the use of quantum dots as sources of entangled photon pairs. The four-photon interference that affects such efficiency is potentially limited by the fine-structure splitting and by the time correlation between cascaded photons, which provide which-path information. The effect of spectral inhomogeneity is also considered, and a possible quantum eraser experiment is discussed for the case of identical dots.
The existence of robust chiral edge states in a finite topologically nontrivial chern insulator is a consequence of the bulk-boundary correspondence. In this paper, we present a theoretical framework based on lattice Greens function to study the scattering of such chiral edge electrons by a single localized impurity. To this end, in the first step, we consider the standard topological Haldane model on a honeycomb lattice with strip geometry. We obtain analytical expressions for the wave functions and their corresponding energy dispersion of the low-energy chiral states localized at the edge of the ribbon. Then, we employ the $T$-matrix Lippmann-Schwinger approach to explicitly show the robustness of chiral edge states against the impurity scattering. This backscattering-free process has an interesting property that the transmitted wave function acquires an additional phase factor. Although this additional phase factor does not affect quantum transport through the chiral channel it can carry quantum information. As an example of such quantum information transport, we investigate the entanglement of two magnetic impurities in a chern insulator through the dissipation-less scattering of chiral electrons.
The low-frequency magneto-optical properties of bilayer Bernal graphene are studied by the tight-binding model with four most important interlayer interactions taken into account. Since the main features of the wave functions are well depicted, the Landau levels can be divided into two groups based on the characteristics of the wave functions. These Landau levels lead to four categories of absorption peaks in the optical absorption spectra. Such absorption peaks own complex optical selection rules and these rules can be reasonably explained by the characteristics of the wave functions. In addition, twin-peak structures, regular frequency-dependent absorption rates and complex field-dependent frequencies are also obtained in this work. The main features of the absorption peaks are very different from those in monolayer graphene and have their origin in the interlayer interactions.