There have been many discussions of two-mode models for Bose condensates in a double well potential, but few cases in which parameters for these models have been calculated for realistic situations. Recent experiments lead us to use the Gross-Pitaevskii equation to obtain optimum two-mode parameters. We find that by using the lowest symmetric and antisymmetric wavefunctions, it is possible to derive equations for a more exact two-mode model that provides for a variable tunneling rate depending on the instantaneous values of the number of atoms and phase differences. Especially for larger values of the nonlinear interaction term and larger barrier heights, results from this model produce better agreement with numerical solutions of the time-dependent Gross-Pitaevskii equation in 1D and 3D, as compared with previous models with constant tunneling, and better agreement with experimental results for the tunneling oscillation frequency [Albiez et al., cond-mat/0411757]. We also show how this approach can be used to obtain modified equations for a second quantized version of the Bose double well problem.