Do you want to publish a course? Click here

Transverse resistance overshoot in a Si/SiGe two-dimensional electron gas in the quantum Hall effect regime

74   0   0.0 ( 0 )
 Added by I. Shlimak
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the peculiarities of the overshoot phenomena in the transverse Hall resistance R_{xy} in Si/SiGe. Near the low magnetic field end of the quantum Hall effect plateaus, when the filling factor u approaches an integer i, R_{xy} overshoots the normal plateau value h/ie^2. However, if magnetic field B increases further, R_{xy} decreases to its normal value. It is shown that in the investigated sample n-Si/Si_{0.7}Ge_{0.3}, overshoots exist for almost all u. Existence of overshoot in R_{xy} observed in different materials and for different u, where splitting of the adjacent Landau bands has different character, hints at the common origin of this effect. Comparison of the experimental curves R_{xy}( u) for u = 3 and u = 5 with and without overshoot showed that this effect exist in the whole interval between plateaus, not only in the region where R_{xy} exceeds the normal plateau value.

rate research

Read More

We report the observation of an electron gas in a SiGe/Si/SiGe quantum well with maximum mobility up to 240 m^2/Vs, which is noticeably higher than previously reported results in silicon-based structures. Using SiO, rather than Al_2O_3, as an insulator, we obtain strongly reduced threshold voltages close to zero. In addition to the predominantly small-angle scattering well known in the high-mobility heterostructures, the observed linear temperature dependence of the conductivity reveals the presence of a short-range random potential.
448 - J. Sailer , A. Wild , V. Lang 2010
We present a systematical experimental investigation of an unusual transport phenomenon observed in two dimensional electron gases in Si/SiGe heterostructures under integer quantum Hall effect (IQHE) conditions. This phenomenon emerges under specific experimental conditions and in different material systems. It is commonly referred to as Hall resistance overshoot, however, lacks a consistent explanation so far. Based on our experimental findings we are able to develop a model that accounts for all of our observations in the framework of a screening theory for the IQHE. Within this model the origin of the overshoot is attributed to a transport regime where current is confined to co-existing evanescent incompressible strips of different filling factors.
185 - R. Raimondi , P. Schwab 2009
We provide a theoretical framework for the electric field control of the electron spin in systems with diffusive electron motion. The approach is valid in the experimentally important case where both intrinsic and extrinsic spin-orbit interaction in a two-dimensional electron gas are present simultaneously. Surprisingly, even when the extrinsic mechanism is the dominant driving force for spin Hall currents, the amplitude of the spin Hall conductivity may be considerably tuned by varying the intrinsic spin-orbit coupling via a gate voltage. Furthermore we provide an explanation of the experimentally observed out-of-plane spin polarization in a (110) GaAs quantum well.
We study the coupled dynamics of spin and charge currents in a two-dimensional electron gas in the transport diffusive regime. For systems with inversion symmetry there are established relations between the spin Hall effect, the anomalous Hall effect and the inverse spin Hall effect. However, in two-dimensional electron gases of semiconductors like GaAs, inversion symmetry is broken so that the standard arguments do not apply. We demonstrate that in the presence of a Rashba type of spin-orbit coupling (broken structural inversion symmetry) the anomalous Hall effect, the spin Hall and inverse spin Hall effect are substantially different effects. Furthermore we discuss the inverse spin Hall effect for a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit coupling; our results agree with a recent experiment.
81 - M. V. Durnev 2021
We study theoretically transverse photoconductivity induced by circularly polarized radiation, i.e. the photovoltaic Hall effect, and linearly polarized radiation causing intraband optical transitions in two-dimensional electron gas (2DEG). We develop a microscopic theory of these effects based on analytical solution of the Boltzmann equation for arbitrary electron spectrum and scattering mechanism. We calculate the transverse photoconductivity of 2DEG with parabolic and linear dispersion for short-range and Coulomb scatterers at different temperatures. We show that the transverse electric current is significantly enhanced at frequencies comparable to the inverse energy relaxation time, whereas at higher frequencies the excitation spectrum and the direction of current depend on the scattering mechanism. We also analyse the effect of thermalization processes caused by electron-electron collisions on the photoconductivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا