We propose a scheme based on using the singlet ground state of an electron spin pair in a double quantum dot nanostructure as a suitable set-up for detecting entanglement between electron spins via the measurement of an optimal entanglement witness. Using time-dependent gate voltages and magnetic fields the entangled spins are separated and coherently rotated in the quantum dots and subsequently detected at spin-polarized quantum point contacts. We analyze the coherent time evolution of the entangled pair and show that by counting coincidences in the four exits an entanglement test can be done. This set-up is close to present-day experimental possibilities and can be used to produce pairs of entangled electrons ``on demand.