Do you want to publish a course? Click here

Metal-insulator transition in PrRu$_4$P$_{12}$ and SmRu$_4$P$_{12}$ investigated by optical spectroscopy

177   0   0.0 ( 0 )
 Added by Masaharu Matsunami
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electronic structures of the filled-skutterudite compounds PrRu$_4$P$_{12}$ and SmRu$_4$P$_{12}$, which undergo a metal-insulator transition (MIT) at $T_{rm MI}$ = 60 K and 16 K, respectively, have been studied by means of optical spectroscopy. Their optical conductivity spectra develop an energy gap of $sim$ 10 meV below $T_{rm MI}$. The observed characteristics of the energy gap are qualitatively different from those of the Kondo semiconductors. In addition, optical phonon peaks in the spectra show anomalies upon the MIT, including broadening and shifts at $T_{rm MI}$ and an appearance of new peaks below $T_{rm MI}$. These results are discussed in terms of density waves or orbital ordering previously predicted for these compounds.



rate research

Read More

Anomalous metal-insulator transition observed in filled skutterudite CeOs$_4$Sb$_{12}$ is investigated by constructing the effective tight-binding model with the Coulomb repulsion between f electrons. By using the mean field approximation, magnetic susceptibilities are calculated and the phase diagram is obtained. When the band structure has a semimetallic character with small electron and hole pockets at $Gamma$ and H points, a spin density wave transition with the ordering vector $mathbf{Q}=(1,0,0)$ occurs due to the nesting property of the Fermi surfaces. Magnetic field enhances this phase in accord with the experiments.
Nature of the field-induced charge ordered phase (phase II) of SmRu$_4$P$_{12}$ has been investigated by resonant x-ray diffraction (RXD) and polarized neutron diffraction (PND), focusing on the relationship between the atomic displacements and the antiferromagnetic (AFM) moments of Sm. From the analysis of the interference between the non-resonant Thomson scattering and the resonant magnetic scattering, combined with the spectral function obtained from x-ray magnetic circular dichroism, it is shown that the AFM moment of Sm prefers to be parallel to the field ($m_{text{AF}} parallel H$), giving rise to large and small moment sites around which the P$_{12}$ and Ru cage contract and expand, respectively. This is associated with the formation of the staggered ordering of the $Gamma_7$-like and $Gamma_8$-like crystal-field states, providing a strong piece of evidence for the charge order. PND was also performed to obtain complementary and unambiguous conclusion. In addition, isotropic and continuous nature of the phase II is demonstrated by the field-direction invariance of the interference spectrum in RXD. Crucial role of the $p$-$f$ hybridization is shown by resonant soft x-ray diffraction at the P $K$-edge ($1sleftrightarrow 3p$), where we detected a resonance due to the spin polarized $3p$ orbitals reflecting the AFM order of Sm.
326 - T. Namiki , Y. Aoki , H. Sato 2007
We report on systematic study of superconducting characteristics and Pr crystalline-electric-field (CEF) levels of filled-skutterudite pra ($T_{rm c}$ = 2.33 K). The temperature dependences of the upper critical field $H_{rm c2}$ and the Ginzburg-Landau (Maki) parameter $kappa_2$ suggest an s-wave clean-limit superconductivity. The electronic specific heat coefficient $gamma sim 95$ mJ/K$^2$mol, being $sim 1.5$ times larger than that for lra, indicates $4f$-originating quasiparticle mass enhancement. Magnetic susceptibility $chi(T)$ indicates that the CEF ground state is a $Gamma_1$ singlet and a $Gamma_4^{(1)}$ triplet first excited state lies at $Delta_{rm CEF}sim 30$ K above. Systematic comparison among pos, prs, pra and La-based reference compounds suggests that inelastic exchange- and aspherical-charge-scatterings of conduction electrons from CEF-split $4f$ levels play an essential role for the quasiparticle mass enhancement and the value of $T_{rm c}$ in the Pr-based filled skutterudites.
Thermal conductivity measurements were performed on single crystal samples of the superconducting filled skutterudite compounds PrOs$_4$Sb$_{12}$ and PrRu$_4$Sb$_{12}$ both as a function of temperature and magnetic field applied perpendicular to the heat current. In zero magnetic field, the low temperature electronic thermal conductivity of PrRu$_4$Sb$_{12}$ is vanishingly small, consistent with a fully-gapped Fermi surface. For PrOs$_4$Sb$_{12}$, however, we find clear evidence for residual electronic conduction as the temperature tends to zero Kelvin which is consistent with the presence of nodes in the superconducting energy gap. The field dependence of the electronic conductivity for both compounds shows a rapid rise immediately above H$_{c1}$ and significant structure over the entire vortex state. In the fully gapped superconductor PrRu$_4$Sb$_{12}$, this is interpreted in terms of multi-band effects. In PrOs$_4$Sb$_{12}$, we consider the Doppler shift of nodal quasiparticles at low fields and multiband effects at higher fields.
Semiconducting skutterudite CeFe$_4$P$_{12}$ is investigated by synchrotron x-ray photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). Ce 3$d$ core-level PES and 3$d-4f$ XAS, in combination with single impurity Anderson model (SIAM) calculations, confirm features due to $f^0$, $f^1$ and $f^2$ configurations. The Ce 4$f$ density of states (DOS) indicates absence of a Kondo resonance at Fermi level, but can still be explained by SIAM with a small gap in non-$f$ DOS. While Ce 4$f$ partial DOS from band structure calculations are also consistent with the main Ce 4$f$ DOS, the importance of SIAM for core and valence spectra indicates Kondo semiconducting mixed valence for CeFe$_4$P$_{12}$, derived from strong hybridization between non-$f$ conduction and Ce 4$f$ DOS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا