Do you want to publish a course? Click here

Observation of a Griffiths phase in paramagnetic La1-xSrxMnO3

346   0   0.0 ( 0 )
 Added by Joachim Deisenhofer
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the discovery of a novel triangular phase regime in the system La1-xSrxMnO3 by means of electron spin resonance and magnetic susceptibility measurements. This phase is characterized by the coexistence of ferromagnetic entities within the globally paramagnetic phase far above the magnetic ordering temperature. The nature of this phase can be understood in terms of Griffiths singularities arising due to the presence of correlated quenched disorder in the orthorhombic phase.



rate research

Read More

A systematic x-ray magnetic circular dichroism study of the paramagnetic phase of ErCo2 has recently allowed to identify the inversion of the net magnetization of the Co net moment with respect to the applied field well above the ferrimagnetic ordering temperature, Tc. The study of small angle neutron scattering measurements has also shown the presence of short range order correlations in the same temperature region. This phenomenon, which we have denoted parimagnetism, may be related with the onset of a Griffiths-like phase in paramagnetic ErCo2. We have measured ac susceptibility on ErCo2 as a function of temperature, applied field, and excitation frequency. Several characteristics shared by systems showing a Griffiths phase are present in ErCo2, namely the formation of ferromagnetic clusters in the disordered phase, the loss of analyticity of the magnetic susceptibility and its extreme sensitivity to an applied magnetic field. The paramagnetic susceptibility allows to establish that the magnetic clusters are only formed by Co moments as well as the intrinsic nature of those Co moments.
61 - T. Mizokawa , D. I. Khomskii , 1999
We have explored spin, charge and orbitally ordered states in La1-xSrxMnO3 (0 < x < 1/2) using model Hartree-Fock calculations on d-p-type lattice models. At x=1/8, several charge and orbitally modulated states are found to be stable and almost degenerate in energy with a homogeneous ferromagnetic state. The present calculation indicates that a ferromagnetic state with a charge modulation along the c-axis which is consistent with the experiment by Yamada et al. might be responsible for the anomalous behavior around x = 1/8.
83 - J. Geck , P. Wochner , S. Kiele 2005
By resonant x-ray scattering at the Mn K-edge on La7/8Sr1/8MnO3, we show that an orbital polaron lattice (OPL) develops at the metal-insulator transition of this compound. This orbital reordering explains consistently the unexpected coexistence of ferromagnetic and insulating properties at low temperatures, the quadrupling of the lattice structure parallel to the MnO2-planes, and the observed polarization and azimuthal dependencies. The OPL is a clear manifestation of strong orbital-hole interactions, which play a crucial role for the colossal magnetoresistance effect and the doped manganites in general.
We report on the pressure effects on the orbital polaron lattice in the lightly doped manganites $mathrm{La_{1-x}Sr_xMnO_{3}}$, with $xsim 1/8$. The dependence of the orbital polaron lattice on $negative$ chemical pressure is studied by substituting Pr for La in $mathrm{(La_{1-y}Pr_y)_{7/8}Sr_{1/8}MnO_{3}}$. In addition, we have studied its hydrostatic pressure dependence in $mathrm{(La_{0.9}Pr_{0.1})_{7/8}Sr_{1/8}MnO_{3}}$. Our results strongly indicate that the hopping $t$ significantly contributes to the stabilization of the orbital polaron lattice and that the orbital polarons are ferromagnetic objects which get stabilized by local double exchange processes. The analysis of short range orbital correlations and the verification of the Grueneisen scaling by hard x-ray, specific heat and thermal expansion data reinforces our conclusions.
According to standard theory the magnetoresistance magnitude in ferromagnetic manganites crucially depends on the electron-phonon coupling strength. We showed that in La0.7Sr0.3MnO3 the phonon renormalization is strong, despite its relatively small magnetoresistance. Here, we report results of a similar inelastic neutron scattering investigation of a closely related compound, La0.8Sr0.2MnO3, where the magnetoresistance is enhanced. We find similar phonon renormalization and dynamic CE-type polaron correlations as in La0.7Sr0.3MnO3. However, quantitative comparison of the results for the two samples shows that only polaron lifetime is well correlated with the strength of the CMR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا