No Arabic abstract
Single electron charging in an individual InAs quantum dot was observed by electrostatic force measurements with an atomic force microscope (AFM). The resonant frequency shift and the dissipated energy of an oscillating AFM cantilever were measured as a function of the tip-back electrode voltage and the resulting spectra show distinct jumps when the tip was positioned above the dot. The observed jumps in the frequency shift, with corresponding peaks in dissipation, are attributed to a single electron tunneling between the dot and the back electrode governed by Coulomb blockade effect, and are consistent with a model based on the free energy of the system. The observed phenomenon may be regarded as the ``force version of the Coulomb blockade effect.
We report on the optical spectroscopy of a single InAs/GaAs quantum dot (QD) doped with a single Mn atom in a longitudinal magnetic field of a few Tesla. Our findings show that the Mn impurity is a neutral acceptor state A^0 whose effective spin J=1 is significantly perturbed by the QD potential and its associated strain field. The spin interaction with photo-carriers injected in the quantum dot is shown to be ferromagnetic for holes, with an effective coupling constant of a few hundreds of micro-eV, but vanishingly small for electrons.
We present the result of a systematic study of the tribological properties of industrial Polytetrafluorethylene (PTFE)-based coatings carried out with an atomic force microscope. A new characterization protocol allowed the reliable and quantitative assessment of the friction coefficient and adhesion forces at the sub-micrometer scale even for highly corrugated industrial samples. We have studied and compared PTFE coatings charged with different additives in dry and humid environment. The influence of additives and humidity on the friction coefficient and on adhesion forces has been investigated using standard silicon nitride tips as sliders in the low-load regime.
To visualize the topography of thin oxide films during growth, thereby enabling to study its growth behavior quasi real-time, we have designed and integrated an atomic force microscope (AFM) in a pulsed laser deposition (PLD) vacuum setup. The AFM scanner and PLD target are integrated in a single support frame, combined with a fast sample transfer method, such that in-situ microscopy can be utilized after subsequent deposition pulses. The in-situ microscope can be operated from room temperature (RT) up to 700$^circ$C and at (process) pressures ranging from the vacuum base pressure of 10$^{-6}$ mbar up to 1 mbar, typical PLD conditions for the growth of oxide films. The performance of this instrument is demonstrated by resolving unit cell height surface steps and surface topography under typical oxide PLD growth conditions.
Strong confinement of charges in few electron systems such as in atoms, molecules and quantum dots leads to a spectrum of discrete energy levels that are often shared by several degenerate quantum states. Since the electronic structure is key to understanding their chemical properties, methods that probe these energy levels in situ are important. We show how electrostatic force detection using atomic force microscopy reveals the electronic structure of individual and coupled self-assembled quantum dots. An electron addition spectrum in the Coulomb blockade regime, resulting from a change in cantilever resonance frequency and dissipation during tunneling events, shows one by one electron charging of a dot. The spectra show clear level degeneracies in isolated quantum dots, supported by the first observation of predicted temperature-dependent shifts of Coulomb blockade peaks. Further, by scanning the surface we observe that several quantum dots may reside on what topologically appears to be just one. These images of grouped weakly and strongly coupled dots allow us to estimate their relative coupling strengths.
Using atomic force microscopy, we have studied the surface structures of high quality molecular beam epitaxy grown (Ga,Mn)As compound. Several samples with different thickness and Mn concentration, as well as a few (Ga,Mn)(As,P) samples have been investigated. All these samples have shown the presence of periodic ripples aligned along the $[1bar{1}0]$ direction. From a detailed Fourier analysis we have estimated the period (~50 nm) and the amplitude of these structures.