Do you want to publish a course? Click here

Electron Spin-Lattice Relaxation of doped Yb3+ ions in YBa2Cu3Ox

50   0   0.0 ( 0 )
 Added by Marat Gafurov
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electron spin-lattice relaxation (SLR) times T1 of Yb3+‡ ions were measured from the temperature dependence of electron spin resonance linewidth in Y0.99Yb0.01Ba2Cu3Ox with different oxygen contents. Raman relaxation processes dominate the electron SLR. Derived from the temperature dependence of the SLR rate, the Debye temperature (Td) increases with the critical temperature Tc and oxygen content x. Keywords: EPR; ESR; Electron spin-lattice relaxation; Debye temperature; Critical temperature



rate research

Read More

The temperature dependence of the electron spin-lattice relaxation SLR was studied in Er0.01Y0.99Ba2Cu3Ox compounds. The data derived from the electron spin resonance ESR and SLR measurements were compared to those from inelastic neutron scattering studies. SLR of Er3+ ions in the temperature range from 20 K to 65 K can be explained by the resonant phonon relaxation process with the involvement of the lowest excited crystalline-electric-field electronic states of Er3+. These results are consistent with a local phase separation effects. Possible mechanisms of the ESR line broadening at lower temperatures are discussed. Keywords: YBCO; EPR; ESR; Electron spin-lattice relaxation time, T ; Crystalline-electric-field
174 - Risdiana , T. Adachi , N. Oki 2010
Muon-spin-relaxation (muSR) measurements have been performed for the partially Zn-substituted electron-doped high-T_c_ superconductor Pr_0.86_LaCe_0.14_Cu_1-y_Zn_y_O_4+alpha-delta_ with y=0-0.05 and the reduced oxygen content delta=0-0.09, in order to investigate nonmagnetic Zn-impurity effects on the Cu-spin dynamics. For all the measured samples with delta=0.01-0.09, it has been found that a fast depolarization of muon spins is observed below 100 K due to the effect of Pr^3+^ moments and that the muSR time spectrum in the long-time region above 5 mu-sec increases with decreasing temperature at low temperatures below 30 K possibly due to slowing down of the Cu-spin fluctuations assisted by Pr^3+^ moments. No Zn-induced slowing down of the Cu-spin fluctuations has been observed for moderately oxygen-reduced samples with delta=0.04-0.09, which is very different from the muSR results of La_2-x_Sr_x_Cu_1-y_Zn_y_O_4_. The possible reason may be that there are no dynamical stripe correlations of spins and electrons in the electron-doped high-T_c_ cuprates or that the effect of Pr^3+^ moments on the muSR spectra is stronger than that of a small amount of Zn impurities.
In order to investigate the low-energy antiferromagnetic Cu-spin correlation and its relation to the superconductivity, we have performed muon spin relaxation (muSR) measurements using single crystals of the electron-doped high-Tc cuprate Pr_1-x_LaCe_x_CuO_4_ in the overdoped regime. The muSR spectra have revealed that the Cu-spin correlation is developed in the overdoped samples where the superconductivity appears. The development of the Cu-spin correlation weakens with increasing x and is negligibly small in the heavily overdoped sample where the superconductivity almost disappears. Considering that the Cu-spin correlation also exist in the superconducting electron-doped cuprates in the undoped and underdoped regimes [T. Adachi et al., J. Phys. Soc. Jpn. 85, 114716 (2016)], our findings suggest that the mechanism of the superconductivity is related to the low-energy Cu-spin correlation in the entire doping regime of the electron-doped cuprates.
88 - Bingying Pan , Yao Shen , Die Hu 2016
Heavily electron-doped iron-selenide (HEDIS) high-transition-temperature (high-$T_{rm{c}}$) superconductors, which have no hole Fermi pockets, but have a notably high $T_{rm{c}}$, have challenged the prevailing $s$$_pm$ pairing scenario originally proposed for iron pnictides containing both electron and hole pockets. The microscopic mechanism underlying the enhanced superconductivity in HEDIS remains unclear. Here, we used neutron scattering to study the spin excitations of the HEDIS material Li$_{0.8}$Fe$_{0.2}$ODFeSe ($T_{rm{c}}$ = 41 K). Our data revealed nearly ring-shaped magnetic resonant excitations surrounding ($pi$, $pi$) at $sim$ 21 meV. As the energy increased, the spin excitations assumed a diamond shape, and they dispersed outward until the energy reached $sim$ 60 meV and then inward at higher energies. The observed energy-dependent momentum structure and twisted dispersion of spin excitations near ($pi$, $pi$) are analogous to those of hole-doped cuprates in several aspects, thus implying that such spin excitations are essential for the remarkably high $T_{rm{c}}$ in these materials.
Electron paramagnetic resonance experiments on doped Yb3+ ions in YBaCuO compounds with different oxygen contents have been made. We have observed the strong temperature dependence of the EPR linewidth in the all investigated samples caused by the Raman processes of spin-lattice relaxation. The spin-lattice relaxation rate anomaly revealed near TC in the superconducting species can be assigned to the phonon density spectrum changes
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا