Do you want to publish a course? Click here

Anomalous Magnetoresistance in Pb-doped Bi$_2$Sr$_2$Co$_2$O$_y$ Single Crystals

68   0   0.0 ( 0 )
 Added by X. H. Chen
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetoresistance (MR) of the Bi$_{2-x}$Pb$_x$Sr$_2$Co$_2$O$_y$ ($x$=0, 0.3, 0.4) single crystals is investigated systematically. A nonmonotonic variation of the isothermal in-plane and out-of-plane MR with the field is observed. The out-of-plane MR is positive in high temperatures and increases with decreasing $T$, and exhibits a pronounced hump, and changes the sign from positive to negative at a centain temperature. These results strongly suggest that the observed MR consists of two contributions: one emph{negative} and one emph{positive} component. The isothermal MR in high magnetic fields follows a $H^2$ law. While the negative contribution comes from spin scattering of carriers by localized-magnetic-moments based on the Khosla-Fischer model.



rate research

Read More

X-ray scattering measurements on optimally-doped single crystal samples of the high temperature superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ reveal the presence of three distinct incommensurate charge modulations, each involving a roughly fivefold increase in the unit cell dimension along the {bf b}-direction. The strongest scattering comes from the well known (H, K$pm$ 0.21, L) modulation and its harmonics. However, we also observe broad diffraction which peak up at the L values complementary to those which characterize the known modulated structure. These diffraction features correspond to correlation lengths of roughly a unit cell dimension, $xi_c$$sim$20 $AA$ in the {bf c} direction, and of $xi_b$$sim$ 185 $AA$ parallel to the incommensurate wavevector. We interpret these features as arising from three dimensional incommensurate domains and the interfaces between them, respectively. In addition we investigate the recently discovered incommensuate modulations which peak up at (1/2, K$pm$ 0.21, L) and related wavevectors. Here we explicitly study the L-dependence of this scattering and see that these charge modulations are two dimensional in nature with weak correlations on the scale of a bilayer thickness, and that they correspond to short range, isotropic correlation lengths within the basal plane. We relate these new incommensurate modulations to the electronic nanostructure observed in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ using STM topography.
We study the pyrochlore series (Eu$_{1-x}$Bi$_x$)$_2$Ir$_2$O$_7$ for $ 0 leq x leq 1$. We show that for small $x$, the lattice undergoes an anomalous contraction but the all-in/all-out and metal-to-insulator transitions remain robust, and the resistivity approaches a $1/T$ dependence at low-T, suggesting proximity to the Weyl semimetallic phase, as previously predicted theoretically. At the boundary between Eu$_2$Ir$_2$O$_7$ and Bi$_2$Ir$_2$O$_7$ a qualitatively different ground state emerges, which is characterized by its unusual metallic behavior and absence of magnetic ordering at least down to $0.02$ K.
The vortex-liquid and vortex-solid phases in single crystals of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ placed in tilted magnetic fields are studied by in-plane resistivity measurements using the Corbino geometry to avoid spurious surface barrier effects. It was found that the anisotropy of the vortex-solid phase increases with temperature and exhibits a maximum at $Tapprox 0.97 T_c$. In contrast, the anisotropy of the vortex-liquid rises monotonically across the whole measured temperature range. The observed behavior is discussed in the context of dimensional crossover and thermal fluctuations of vortices in the strongly layered system.
We report an ARPES investigation of the circular dichroism in the first Brillouin zone (BZ) of under- and overdoped Pb-Bi2212 samples. We show that the dichroism has opposite signs for bonding and antibonding components of the bilayer-split CuO-band and is antisymmetric with respect to reflections in both mirror planes parallel to the c-axis. Using this property of the energy and momentum intensity distributions we prove the existence of the bilayer splitting in the normal state of the underdoped compound and compare its value with the splitting in overdoped sample. In agreement with previous studies the magnitude of the interlayer coupling does not depend significantly on doping. We also discuss possible origins of the observed dichroism.
We report the physical properties and electronic structure calculations of a layered chromium oxypnictide, Sr$_2$Cr$_3$As$_2$O$_2$, which crystallizes in a Sr$_2$Mn$_3$As$_2$O$_2$-type structure containing both CrO$_2$ planes and Cr$_2$As$_2$ layers. The newly synthesized material exhibits a metallic conduction with a dominant electron-magnon scattering. Magnetic and specific-heat measurements indicate at least two intrinsic magnetic transitions below room temperature. One is an antiferromagnetic transition at 291 K, probably associated with a spin ordering in the Cr$_2$As$_2$ layers. Another transition is broad, occurring at around 38 K, and possibly due to a short-range spin order in the CrO$_2$ planes. Our first-principles calculations indicate predominant two-dimensional antiferromagnetic exchange couplings, and suggest a KG-type (i.e. K$_2$NiF$_4$ type for CrO$_2$ planes and G type for Cr$_2$As$_2$ layers) magnetic structure, with reduced moments for both Cr sublattices. The corresponding electronic states near the Fermi energy are mostly contributed from Cr-3$d$ orbitals which weakly (modestly) hybridize with the O-2$p$ (As-4$p$) orbitals in the CrO$_2$ (Cr$_2$As$_2$) layers. The bare bandstructure density of states at the Fermi level is only $sim$1/4 of the experimental value derived from the low-temperature specific-heat data, consistent with the remarkable electron-magnon coupling. The title compound is argued to be a possible candidate to host superconductivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا