The present review is devoted to the problems of finite-size scaling due to the presence of long-range interaction decaying at large distance as $1/r^{d+sigma}$, where $d$ is the spatial dimension and the long-range parameter $sigma>0$. Classical and quantum systems are considered.
We study the statistical properties of Ising spin chains with finite (although arbitrary large) range of interaction between the elements. We examine mesoscopic subsystems (fragments of an Ising chain) with the lengths comparable with the interaction range. The equivalence of the Ising chains and the multi-step Markov sequences is used for calculating different non-additive statistical quantities of a chain and its fragments. In particular, we study the variance of fluctuating magnetization of fragments, magnetization of the chain in the external magnetic field, etc. Asymptotical expressions for the non-additive energy and entropy of the mesoscopic fragments are derived in the limiting cases of weak and strong interactions.
A class of non-local contact processes is introduced and studied using mean-field approximation and numerical simulations. In these processes particles are created at a rate which decays algebraically with the distance from the nearest particle. It is found that the transition into the absorbing state is continuous and is characterized by continuously varying critical exponents. This model differs from the previously studied non-local directed percolation model, where particles are created by unrestricted Levy flights. It is motivated by recent studies of non-equilibrium wetting indicating that this type of non-local processes play a role in the unbinding transition. Other non-local processes which have been suggested to exist within the context of wetting are considered as well.
We consider scaling of the entanglement entropy across a topological quantum phase transition in one dimension. The change of the topology manifests itself in a sub-leading term, which scales as $L^{-1/alpha}$ with the size of the subsystem $L$, here $alpha$ is the R{e}nyi index. This term reveals the universal scaling function $h_alpha(L/xi)$, where $xi$ is the correlation length, which is sensitive to the topological index.
We study diffusion-controlled single-species annihilation with a finite number of particles. In this reaction-diffusion process, each particle undergoes ordinary diffusion, and when two particles meet, they annihilate. We focus on spatial dimensions $d>2$ where a finite number of particles typically survive the annihilation process. Using the rate equation approach and scaling techniques we investigate the average number of surviving particles, $M$, as a function of the initial number of particles, $N$. In three dimensions, for instance, we find the scaling law $Msim N^{1/3}$ in the asymptotic regime $Ngg 1$. We show that two time scales govern the reaction kinetics: the diffusion time scale, $Tsim N^{2/3}$, and the escape time scale, $tausim N^{4/3}$. The vast majority of annihilation events occur on the diffusion time scale, while no annihilation events occur beyond the escape time scale.
We investigate the use of matrix product states (MPS) to approximate ground states of critical quantum spin chains with periodic boundary conditions (PBC). We identify two regimes in the (N,D) parameter plane, where N is the size of the spin chain and D is the dimension of the MPS matrices. In the first regime MPS can be used to perform finite size scaling (FSS). In the complementary regime the MPS simulations show instead the clear signature of finite entanglement scaling (FES). In the thermodynamic limit (or large N limit), only MPS in the FSS regime maintain a finite overlap with the exact ground state. This observation has implications on how to correctly perform FSS with MPS, as well as on the performance of recent MPS algorithms for systems with PBC. It also gives clear evidence that critical models can actually be simulated very well with MPS by using the right scaling relations; in the appendix, we give an alternative derivation of the result of Pollmann et al. [Phys. Rev. Lett. 102, 255701 (2009)] relating the bond dimension of the MPS to an effective correlation length.