No Arabic abstract
This model describes cluster aggregation in a stirred colloidal solution Interacting clusters compete for growth in this winner-takes-all model; for finite assemblies, the largest cluster always wins, i.e. there is a uniform sediment. In mean-field, the model exhibits glassy dynamics, with two well-separated time scales, corresponding to individual and collective behaviour; the survival probability of a cluster eventually falls off according to a universal law $(ln t)^{-1/2}$. In finite dimensions, the glassiness is enhanced: the dynamics manifests both {it ageing} and metastability, where pattern formation is manifested in each metastable state by a fraction of {it immortal} clusters.
The motion of an artificial micro-scale swimmer that uses a chemical reaction catalyzed on its own surface to achieve autonomous propulsion is fully characterized experimentally. It is shown that at short times, it has a substantial component of directed motion, with a velocity that depends on the concentration of fuel molecules. At longer times, the motion reverts to a random walk with a substantially enhanced diffusion coefficient. Our results suggest strategies for designing artificial chemotactic systems.
We discuss microscopic mechanisms of complex network growth, with the special emphasis of how these mechanisms can be evaluated from the measurements on real networks. As an example we consider the network of citations to scientific papers. Contrary to common belief that its growth is determined by the linear preferential attachment, our microscopic measurements show that it is driven by the nonlinear autocatalytic growth. This invalidates the scale-free hypothesis for the citation network. The nonlinearity is responsible for a dramatic dynamical phase transition: while the citation lifetime of majority of papers is 6-10 years, the highly-cited papers have practically infinite lifetime.
We report results of dynamic light scattering measurements of the coherent intermediate scattering function (ISF) of glasses of hard spheres for several volume fractions and a range of scattering vectors around the primary maximum of the static structure factor. The ISF shows a clear crossover from an initial fast decay to a slower non-stationary decay. Ageing is quantified in several different ways. However, regardless of the method chosen, the perfect aged glass is approached in a power-law fashion. In particular, the coupling between the fast and slow decays, as measured by the degree of stretching of the ISF at the crossover, also decreases algebraically with waiting time. The non-stationarity of this coupling implies that even the fastest detectable processes are themselves non-stationary.
We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge in two-dimensions, and the deposition front, or growth line, varies spatio-temporally. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes that depend strongly on particle shape. Sphere deposition exhibits a classic Poisson like growth process; deposition of slightly anisotropic particles, however, belongs to the Kardar-Parisi-Zhang (KPZ) universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by KPZ fluctuations in the presence of quenched disorder.
We investigate critical phenomena in colloids by means of the renormalization-group based hierarchical reference theory of fluids (HRT). We focus on three experimentally relevant model systems: namely, the Asakura-Oosawa model of a colloidal dispersion under the influence of polymer-induced attractive depletion forces; fluids with competing short-range attractive and longer-range repulsive interactions; solutions of star-polymers whose pair potential presents both an attractive well and an ultrasoft repulsion at shorter distance. Our results show that the ability to tune the effective interactions between colloidal particles allows one to generate a variety of crossovers to the asymptotic critical behavior, which are not observed in atomic fluids.