Do you want to publish a course? Click here

Correlation effects on the electronic structure of TiOCl: a NMTO+DMFT study

65   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the recently developed N-th order muffin-tin orbital-based downfolding technique in combination with the Dynamical Mean Field theory, we investigate the electronic properties of the much discussed Mott insulator TiOCl in the undimerized phase. Inclusion of correlation effects through this approach provides a description of the spectral function into an upper and a lower Hubbard band with broad valence states formed out of the orbitally polarized, lower Hubbard band. We find that these results are in good agreement with recent photo-emission spectra.



rate research

Read More

148 - R. Okazaki , Y. Nishina , Y. Yasui 2011
We study the optical properties of the layered rhodium oxide K0.49RhO2, which is isostructural to the thermoelectric material NaxCoO2. The optical conductivity shows broad interband transition peaks as well as a low-energy Drude-like upturn, reminiscent of the optical spectra of NaxCoO2. We find that the peaks clearly shift to higher energies with respect to those of NaxCoO2, indicating a larger crystal-field splitting between eg and t2g bands in K0.49RhO2. The Drude weights suggest that the effective mass of K0.49RhO2 is almost two times smaller than that of NaxCoO2. These differences in electronic structures and correlation effects between NaxCoO2 and K0.49RhO2 are discussed in terms of the difference between Co 3d and Rh 4d orbitals.
Effects of Coulomb correlation on LaOFeAs electronic structure have been investigated by LDA+DMFT(QMC) method. The calculation results show that LaOFeAs is in the regime of intermediate correlation strength with significant part of the spectral density moved from the Fermi energy to Hubbard bands. However the system is not on the edge of metal insulator-transition because increase of the Coulomb interaction parameter value from $U$=4.0 eV to $U$=5.0 eV did not result in insulator state. Correlations affect different d-orbitals not in the same way. $t_{2g}$ states ($xz,yz$ and $x^2-y^2$ orbitals) have higher energy due to crystal filed splitting and are nearly half-filled. Their spectral functions have pseudogap with Fermi energy position on the higher sub-band slope. Lower energy $e_g$ set of d-orbitals ($3z^2-r^2$ and $xy$) have significantly larger occupancy values with typically metallic spectral functions.
A combination of Density Functional Theory and the Dynamical Mean Field theory (DMFT) is used to calculate the magnetic susceptibility, heat capacity, and the temperature dependence of the valence band photoemission spectra. The continuous-time hybridization expansion quantum Monte-Carlo is utilized to provide the first approximation-free DMFT solution of emph{fcc} $delta$-Pu which includes the full rotationally-invariant exchange interaction. We predict that $delta$-Pu has a Pauli-like magnetic susceptibility near ambient temperature, as in experiment, indicating that electronic coherence causes the absence of local moments. Additionally, We show that volume expansion causes a crossover from incoherent to coherent electronic behavior at increasingly lower temperatures.
183 - Eva Pavarini 2014
The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method are (i) building material-specific Hubbard-like many-body models and (ii) solving them in the dynamical mean-field approximation. Step (i) requires the construction of a localized one-electron basis, typically a set of Wannier functions. It also involves a number of approximations, such as the choice of the degrees of freedom for which many-body effects are explicitly taken into account, the scheme to account for screening effects, or the form of the double-counting correction. Step (ii) requires the dynamical mean-field solution of multi-orbital generalized Hubbard models. Here central is the quantum-impurity solver, which is also the computationally most demanding part of the full LDA+DMFT approach. In this chapter I will introduce the core aspects of the LDA+DMFT method and present a prototypical application.
The electronic correlation strength is a basic quantity that characterizes the physical properties of materials such as transition metal oxides. Determining correlation strengths requires both precise definitions and a careful comparison between experiment and theory. In this paper we define the correlation strength via the magnitude of the electron self-energy near the Fermi level. For the case of LaNiO$_3$, we obtain both the experimental and theoretical mass enhancements $m^star/m$ by considering high resolution angle-resolved photoemission spectroscopy (ARPES) measurements and density functional + dynamical mean field theory (DFT + DMFT) calculations. We use valence-band photoemission data to constrain the free parameters in the theory, and demonstrate a quantitative agreement between the experiment and theory when both the realistic crystal structure and strong electronic correlations are taken into account. These results provide a benchmark for the accuracy of the DFT+DMFT theoretical approach, and can serve as a test case when considering other complex materials. By establishing the level of accuracy of the theory, this work also will enable better quantitative predictions when engineering new emergent properties in nickelate heterostructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا