Do you want to publish a course? Click here

Semiclassical Time Evolution of the Holes from Luttinger Hamiltonian

68   0   0.0 ( 0 )
 Added by Zhanfeng Jiang
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the semi-classical motion of holes by exact numerical solution of the Luttinger model. The trajectories obtained for the heavy and light holes agree well with the higher order corrections to the abelian and the non-abelian adiabatic theories in Ref. [1] [S. Murakami et al., Science 301, 1378(2003)], respectively. It is found that the hole trajectories contain rapid oscillations reminiscent of the Zitterbewegung of relativistic electrons. We also comment on the non-conservation of helicity of the light holes.



rate research

Read More

Within the Floquet theory of periodically driven quantum systems, we developed the theory of light-induced modification of electronic states in semiconductor materials described by the Luttinger Hamiltonian (the electronic term $Gamma_8$). Particularly, exact solutions of the Floquet problem are found for the band edge in the cases of linearly and circularly polarized irradiation. It is shown that the irradiation changes electron effective masses near the band edge, induces anisotropy of the electron dispersion and splits the bands. It is demonstrated that the light-induced band splitting strongly depends on the light polarization. Namely, the circularly polarized light acts similarly to a stationary magnetic field and lifts the spin degeneracy of electron branches, whereas a linearly polarized light does not affect the spin degeneracy and only splits the bands in the center of the Brillouin zone. The present theory can be applied to describe electronic properties of various semiconductor structures irradiated by an electromagnetic field in the broad frequency range.
107 - Piet W. Brouwer 2007
In ballistic conductors, there is a low-time threshold for the appearance of quantum effects in transport coefficients. This low-time threshold is the Ehrenfest time. Most previous studies of the Ehrenfest-time dependence of quantum transport assumed ergodic electron dynamics, so that they could be applied to ballistic quantum dots only. In this article we present a theory of the Ehrenfest-time dependence of three signatures of quantum transport - the Fano factor for the shot noise power, the weak localization correction to the conductance, and the conductance fluctuations - for arbitrary ballistic conductors.
We analyse nonequilibrium phase transitions in microcavity polariton condensates trapped in optically induced annular potentials. We develop an analytic model for annular optical traps, which gives an intuitive interpretation for recent experimental observations on the polariton spatial mode switching with variation of the trap size. In the vicinity of polariton lasing threshold we then develop a nonlinear mean-field model accounting for interactions and gain saturation, and identify several bifurcation scenarios leading to formation of high angular momentum quantum vortices. For experimentally relevant parameters we predict the emergence of spatially and temporally ordered polariton condensates (time crystals), which can be witnessed by frequency combs in the polariton lasing spectrum or by direct time-resolved optical emission measurements. In contrast to previous realizations, our polaritonic time crystal is spontaneously formed from an incoherent excitonic bath and does not inherit its frequency from any periodic driving field.
Unwanted interaction between a quantum system and its fluctuating environment leads to decoherence and is the primary obstacle to establishing a scalable quantum information processing architecture. Strategies such as environmental and materials engineering, quantum error correction and dynamical decoupling can mitigate decoherence, but generally increase experimental complexity. Here we improve coherence in a qubit using real-time Hamiltonian parameter estimation. Using a rapidly converging Bayesian approach, we precisely measure the splitting in a singlet-triplet spin qubit faster than the surrounding nuclear bath fluctuates. We continuously adjust qubit control parameters based on this information, thereby improving the inhomogenously broadened coherence time ($T_{2}^{*}$) from tens of nanoseconds to above 2 $mu$s and demonstrating the effectiveness of Hamiltonian estimation in reducing the effects of correlated noise in quantum systems. Because the technique demonstrated here is compatible with arbitrary qubit operations, it is a natural complement to quantum error correction and can be used to improve the performance of a wide variety of qubits in both metrological and quantum-information-processing applications.
The model of interacting fermion systems in one dimension known as Tomonaga-Luttinger liquid (TLL) provides a simple and exactly solvable theoretical framework, predicting various intriguing physical properties. Evidence of TLL has been observed as power-law behavior in the electronic transport and momentum-resolved spectroscopy on various types of one-dimensional (1D) conductors. However, these measurements, which rely on dc transport involving tunneling processes, cannot identify the eigenmodes of the TLL, i.e., collective excitations characterized by non-trivial effective charge e* and charge velocity v*. The elementary process of charge fractionalization, a phenomenon predicted to occur at the junction of a TLL and non-interacting leads, has not been observed. Here we report time-resolved transport measurements on an artificial TLL comprised of coupled integer quantum Hall edge channels, successfully identifying single charge fractionalization processes. An electron wave packet with charge e incident from a non-interacting region breaks up into several fractionalized charge wave packets at the edges of the artificial TLL region, from which e* and v* can be directly evaluated. These results are informative for elucidating the nature of TLLs and low-energy excitations in the edge channels.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا