Do you want to publish a course? Click here

Long-range interactions & parallel scalability in molecular simulations

59   0   0.0 ( 0 )
 Added by Michael Patra
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Typical biomolecular systems such as cellular membranes, DNA, and protein complexes are highly charged. Thus, efficient and accurate treatment of electrostatic interactions is of great importance in computational modelling of such systems. We have employed the GROMACS simulation package to perform extensive benchmarking of different commonly used electrostatic schemes on a range of computer architectures (Pentium-4, IBM Power 4, and Apple/IBM G5) for single processor and parallel performance up to 8 nodes - we have also tested the scalability on four different networks, namely Infiniband, GigaBit Ethernet, Fast Ethernet, and nearly uniform memory architecture, i.e., communication between CPUs is possible by directly reading from or writing to other CPUs local memory. It turns out that the particle-mesh Ewald method (PME) performs surprisingly well and offers competitive performance unless parallel runs on PC hardware with older network infrastructure are needed. Lipid bilayers of sizes 128, 512 and 2048 lipid molecules were used as the test systems representing typical cases encountered in biomolecular simulations. Our results enable an accurate prediction of computational speed on most current computing systems, both for serial and parallel runs. These results should be helpful in, for example, choosing the most suitable configuration for a small departmental computer cluster.



rate research

Read More

We use a computational model to investigate the emergence of interaction forces between pairs of intruders in a horizontally vibrated granular fluid. The time evolution of a pair of particles shows a maximum of the likelihood to find the pair at contact in the direction of shaking. This relative interaction is further studied by fixing the intruders in the simulation box where we identify effective mechanical forces, and torques between particles and quantify an emergent long range attractive force as a function of the shaking relative angle, amplitude, and the packing density of grains. We determine the local density and kinetic energy profiles of granular particles along the axis of the dimer to find no gradients in the density fields and additive gradients in the kinetic energies.
We present a new model of sequential adsorption in which the adsorbing particles experience dipolar interactions. We show that in the presence of these long-range interactions, highly ordered structures in the adsorbed layer may be induced at low temperatures. The new phenomenology manifests through significant variations of the pair correlation function and the jamming limit, with respect to the case of noninteracting particles. Our study could be relevant in understanding the adsorption of magnetic colloidal particles in presence of a magnetic field.
We study velocity statistics of electrostatically driven granular gases. For two different experiments: (i) non-magnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy tail is exponential, P(v) ~ exp(-|v|). This behavior is consistent with kinetic theory of driven dissipative particles. For particles immersed in a fluid, viscous damping is responsible for the exponential tail, while for magnetic particles, long-range interactions cause the exponential tail. We conclude that velocity statistics of dissipative gases are sensitive to the fluid environment and to the form of the particle interaction.
A class of non-local contact processes is introduced and studied using mean-field approximation and numerical simulations. In these processes particles are created at a rate which decays algebraically with the distance from the nearest particle. It is found that the transition into the absorbing state is continuous and is characterized by continuously varying critical exponents. This model differs from the previously studied non-local directed percolation model, where particles are created by unrestricted Levy flights. It is motivated by recent studies of non-equilibrium wetting indicating that this type of non-local processes play a role in the unbinding transition. Other non-local processes which have been suggested to exist within the context of wetting are considered as well.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا