Do you want to publish a course? Click here

Controlling quasiparticle excitations in a trapped Bose-Einstein condensate

108   0   0.0 ( 0 )
 Added by Sungjong Woo
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe an approach to quantum control of the quasiparticle excitations in a trapped Bose-Einstein condensate based on adiabatic and diabatic changes in the trap anisotropy. We describe our approach in the context of Landau-Zener transition at the avoided crossings in the quasiparticle excitation spectrum. We show that there can be population oscillation between different modes at the specific aspect ratios of the trapping potential at which the mode energies are almost degenerate. These effects may have implications in the expansion of an excited condensate as well as the dynamics of a moving condensate in an atomic wave guide with a varying width.



rate research

Read More

175 - R. N. Bisset , D. Baillie , 2013
We consider the quasi-particle excitations of a trapped dipolar Bose-Einstein condensate. By mapping these excitations onto radial and angular momentum we show that the roton modes are clearly revealed as discrete fingers in parameter space, whereas the other modes form a smooth surface. We examine the properties of the roton modes and characterize how they change with the dipole interaction strength. We demonstrate how the application of a perturbing potential can be used to engineer angular rotons, i.e. allowing us to controllably select modes of non-zero angular momentum to become the lowest energy rotons.
117 - D. R. Murray 2007
We calculate the low energy elementary excitations of a Bose-Einstein Condensate in an effective magnetic field. The field is created by the interplay between light beams carrying orbital angular momentum and the trapped atoms. We examine the role of the homogeneous magnetic field, familiar from studies of rotating condensates, and also investigate spectra for vector potentials with a more general radial dependence. We discuss the instabilities which arise and how these may be manifested.
Surface modes in a Bose-Einstein condensate of sodium atoms have been studied. We observed excitations of standing and rotating quadrupolar and octopolar modes. The modes were excited with high spatial and temporal resolution using the optical dipole force of a rapidly scanning laser beam. This novel technique is very flexible and should be useful for the study of rotating Bose-Einstein condensates and vortices.
132 - S. Tsuchiya , Y. Ohashi 2009
We investigate tunneling properties of Bogoliubov phonons in a Bose-Einstein condensate. We find the anomalous enhancement of the quasiparticle current $J_{rm q}$ carried by Bogoliubov phonons near a potential barrier, due to the supply of the excess current from the condensate. This effect leads to the increase of quasiparticle transmission probability in the low energy region found by Kovrizhin {it et al.}. We also show that the quasiparticle current twists the phase of the condensate wavefunction across the barrier, leading to a finite Josephson supercurrent $J_{rm s}$ through the barrier. This induced supercurrent flows in the opposite direction to the quasiparticle current so as to cancel out the enhancement of $J_{rm q}$ and conserve the total current $J=J_{rm q}+J_{rm s}$.
We report on the observation of vortex formation in a Bose-Einstein condensate of Rb-87 atoms. Vortices are generated by superimposing an oscillating excitation to the trapping potential introduced by an external magnetic field. For small amplitudes of the external excitation field we observe a bending of the cloud axis. Increasing the amplitude we observe formation of a growing number of vortices in the sample. Shot-to-shot variations in both vortex number and position within the condensed cloud are observed, probably due to the intrinsic vortex nucleation dynamics. We discuss the possible formation of vortices and anti-vortices in the sample as well as possible mechanisms for vortex nucleation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا