We consider strongly-correlated systems described by the multi-orbital Hubbard model in the atomic limit and obtain exact expressions for the chemical potential and thermopower. We show that these expressions reduce to the Heikes formula in the appropriate limits ($k_BT gg U$) and ($k_BT ll U$) and obtain the full temperature dependence in between these regimes. We also investigate the effect of a magnetic field introduced through a Zeeman term and observe that the thermopower of the multi-orbital Hubbard model displays spikes as a function of magnetic field at certain special values of the field. This effect might be observable in experiments for materials with a large magnetic coupling.
The extended Hubbard model in the atomic limit (AL-EHM) on a square lattice with periodic boundary conditions is studied with use of the Monte Carlo (MC) method. Within the grand canonical ensemble the phase and order-order boundaries for charge orderings are obtained. The phase diagrams include three types of charge ordered phases and the nonordered phase. The system exhibits very rich structure and shows unusual multicritical behavior. In the limiting case of tij = 0, the EHM is equivalent to the pseudospin model with single-ion anisotropy 1/2U, exchange interaction W in an effective magnetic field (mu-1/2U-zW). This classical spin model is analyzed using the MC method for the canonical ensemble. The phase diagram is compared with the known results for the Blume-Capel model.
In this paper we present for the first time the exact solution in the narrow-band limit of the 1D extended Hubbard model with nearest-neighbour spin-spin interactions described by an exchange constant J. An external magnetic field h is also taken into account. This result has been obtained in the framework of the Greens functions formalism, using the Composite Operator Method. By means of this theoretical background, we have studied some relevant features such as double occupancy, magnetization, spin-spin and charge-charge correlation functions and derived a phase diagram for both ferro (J>0) and anti-ferro (J<0) coupling in the limit of zero temperature. We also report a study on density of states, specific heat, charge and spin susceptibilities. In the limit of zero temperature, we show that the model exhibits a very rich phase diagram characterized by different magnetic orders and by the coexistence of charge and spin orderings at commensurate filling. Moreover, our analysis at finite temperature of density of states and response functions shows the presence of low-temperature charge and spin excitations near the phase boundaries.
Using a straightforward extension of the analysis of Lieb and Wu, we derive a simple analytic form for the ground state energy of a one-dimensional Hubbard ring in the atomic limit. This result is valid for an textit{arbitrary} number of lattice sites $L$ and electrons $N leq L$. Furthermore, our analysis, including an application of the theory of stochastic matrices, provides insight into the degeneracy and spin properties of the ground states in the atomic limit. We give numerical results which illustrate how the atomic limit is approached.
We analyze the quantum phase diagram of the Holstein-Hubbard model using an asymptotically exact strong-coupling expansion. We find all sorts of interesting phases including a pair-density wave (PDW), a charge 4e (and even a charge 6e) superconductor, regimes of phase separation, and a variety of distinct charge-density-wave (CDW), spin-density-wave (SDW) and superconducting regimes. We chart the crossovers that occur as a function of the degree of retardation, i.e. the ratio of characteristic phonon frequency to the strength of interactions.
A pair-density-wave (PDW) is a novel superconducting state with an oscillating order parameter. A microscopic mechanism that can give rise to it has been long sought but has not yet been established by any controlled calculation. Here we report a density-matrix renormalization group (DMRG) study of an effective $t$-$J$-$V$ model, which is equivalent to the Holstein-Hubbard model in a strong-coupling limit, on long two-, four- and six-leg triangular cylinders. While a state with long-range PDW order is precluded in one dimension, we find strong quasi-long-range PDW order with a divergent PDW susceptibility as well as spontaneous breaking of time-reversal and inversion symmetries. Despite the strong interactions, the underlying Fermi surfaces and electron pockets around the $K$ and $K^prime$ points in the Brillouin zone can be identified. We conclude that the state is valley-polarized and that the PDW arises from intra-pocket pairing with an incommensurate center of mass momentum. In the two-leg case, the exponential decay of spin correlations and the measured central charge $capprox 1$ are consistent with an unusual realization of a Luther-Emery liquid.
Subroto Mukerjee
.
(2004)
.
"Thermopower of the Hubbard model: Effects of multiple orbitals and magnetic fields in the atomic limit"
.
Subroto Mukerjee
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا